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ABSTRACT

This work presented the results of the implementation of an off-line smoothing algorithm in the monitoring system,
for the partial hydrolysis of cheese whey proteins using enzymes, which used penalized least squares. Different
algorithms for on-line signals filtering used by the control were also compared: artificial neural networks, moving
average and smoothing algorithm.
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INTRODUCTION

The enzymatic hydrolysis of the cheese whey is an
interesting alternative to reuse the same as value-
added product. Cheese whey, when discharged,
presents high environmental hazard (BOD
approximately 35000 mgO2/L, while domestic
sewage, as a comparison base, has BOD of 300
mgO2/L, Viotto, 1993). On the other hand, due to
protein characteristics, its controlled enzymatic
hydrolysis (proteolysis), with the aid of enzymes
immobilized in an inert support can either change
or evidence functional properties of the produced
peptides, increasing the potential applications of
cheese whey. Derivatives of cheese whey have
been applied to produce creamers for foaming
beverages, edible food films, milk and salt
substitutes, besides their use as supplementary
food with low text of phenylalanine (used in the
diet of phenylketonuria patients).

Sousa Jr. et al. (2004), presented a hybrid
algorithm GMC-Fuzzy for pH control during
hydrolysis (control of this is basic importance to
modulate the MWD of product). Sousa Jr. et al.
(2003), presented a supervisory system of this
process that used a hybrid “kinetic-neural” model
for on-line inference of MWD, in five bands of
molecular weights previously determined.
In this scenario, considerable random noise was
identified in pH and temperature signals used by
pH control and hybrid “kinetic-neural” algorithms
cited above. The previous filtering of such signals
contributes to a better performance of both
algorithms, besides promoting a better
understanding of the process. The performance of
different digital fil ters is compared in this work,
based on artificial neural networks, moving
average (Smith, 1999) and smoother, with discrete
penalized least squares (Eilers, 2003). Such
smoother is also employed for data post-treatment,
implemented in the proper supervised system of
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the process and preventing, thus, exportation of
data record process to other mathematical
packages.

Enzymatic Proteolysis of Cheese Whey
Reactions React1, React2 and React3 summarize
the proteolysis reactions:

H2O

              (Amino)       (Carboxyl)
R1 - NH --- OC - R2 →→→→ R1 - NH2 + HOOC - R2

                          (React1)

After hydrolysis, protonation and deprotonation of
terminal amino and carboxyl groups occur:

R1  NH2   +   H+   ↔↔↔↔  R1  NH3
+           (React2)

and
R2  COOH   ↔↔↔↔    R2  COO-   +   H+  (React3)

The optimum pH of immobil ized enzyme here
employed, Alcalase NOVO, was between 9.0 and
10.0 (Sousa Jr., 2003). During the course of the
reaction the pH value tends to decrease (React3
completely dislocates to the right, generating
hydrogen ions that React2 does not absorb totally).
As the result of chemical equil ibrium of
dissociated reactions, the concentration of H+ ions
in the mean increases affecting the enzymatic
activity. The properties of hydrolysate depend on
the degree of hydrolysis, which is influenced by
the activity of protease, physical and chemical
character of protein substrate and conditions of
reactor (Adler-Nissen, 1986). Thus, the good
performance of pH control algorithm is essential
for the product quali ty. However, such
performance is directly related to the quality of pH
and temperature sampled signals during the
enzymatic process.

Moving Average Filter
The moving average is the most common filter in
digital signal processing, mainly because it is the
easiest digital filter to understand and use (Smith,
1999). As the name implies, the moving average
filter calculates the average of a number of input
signals a, in a moving window, to produce an
output signal y. For example, in a 3 point moving
average filter (M = 3), point 80 in the output signal

is given by Equation 1, where the input signals are
chosen symmetrically around the output signal
(symmetrical approach):
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It’s possible to verify that symmetrical approach
implies in a late response for on-line applications.

Filters based on Neural Networks
A possible explanation for the good performance
of neural networks (NNs) in the fil tering of signals
is based on the concept of "microfeature"
(Baughman and Liu, 1995). According to this, no
single node is directly responsible for associating a
certain input with a certain output. In contrast,
each node codifies a “microfeature” of input-
output pattern. Each node affects the pattern
slightly, thus minimizing the effects of noise in
any given node. Other computational techniques
do not add this concept. In most of the empirical
models, for instance, each variable has a
significant impact on the output.
Fil ters based on NNs have been developed for the
sampled pH and temperature data. Fig. 1 ill ustrates
the structure of the filters:
The sampled data a (pH or temperature) is the
input of the first recurrent NN. A classical moving
average filter with no symmetrical approach
(Smith, 1999) uses the value inferred from this NN
(ε1). Then, the second recurrent NN infers the
smoothed value that is used by the GMC-Fuzzy
algorithm (ε2). The recurrent NNs showed in
Fig. 1 were trained off -line with real data
(different of data of experimental assays, used to
validation, but with the same noisy magnitude)
using the Neural Network Toolbox of MATLAB
5.2 (MathWorks Inc., USA). The function
TRAINLM, available in its toolbox, was network-
training function.
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Figure 1 - Structure of filter based on NNs.

Smoother
The smoother here employed, proposed by Eilers
(2003), searches to fit a smooth series z to a
(sampled with a constant time acquisition). Two
conflicting goals appear: (1) fidelity to the original
data and (2) roughness. Roughness can be
expressed, to a first order smoother, by the
differences•: ∆z(t) = z(t) -z(t-1), providing a
effective measure of the roughness R:

[ ]∑ ∆=
t

tzR 2)(                                                   (2)

The lack of fit to original data S can be usually
measured as the sum of squares of differences
(Equation 3):

[ ]2
)()(∑ −=

t

tztaS                                           (3)

The sum of Equations 2 and 3 adds the two
contradictory objectives mentioned. Thus, we have
a standard sum of squares problem whit

                                               
• to a second order smoother:

)2()1(2)()(2 −+−−=∆∆=∆ tztztzzz

penalization, where the goal is to find series z that
minimizes Q:

RSQ λ+=                                                        (4)

λ is a parameter chosen by the user which, how
much bigger, bigger smoothness will i nduce to
adjusted series z and, however, minor the fidelity
to the original data set (there is the penalization
concept).
Introducing matrices and vectors (Eilers, 2003),
taking Dz = ∆z, the linear system described by
Equation 5 arises:

az)D'DI( =+ λ                                             (5)

I is identity matrix; D’  is first (first order
smoother) or second derivative (second order
smoother) of D.

MATERIALS AND METHODS

Exper imental Assays
Cooperativa de Lacticínios São Carlos donated
raw cheese whey, which was previously micro-
(membrane 0.45 µm, A/G Technology
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Corporation) and ultra-fil tered (membrane
10000 Da, Amicon) up to the concentration of
52 g/L.
Experimental assays of enzymatic hydrolysis
yielded five noisy pH and temperature data sets.
The reaction was carried out in a 0.5L glass stirred
vessel with temperature control (thermostatic bath
Brookfield Ex.200). Continuous cheese whey
feeding and product withdrawal were done
through pumps Masterflex 7519-10, while
titration for pH control was done through
ProMinent Gamma G/4b. Measurements of pH
and temperature were carried out using an Orion
electrode (diameter 1.5 cm) and thermo-resistance
Pt100, respectively. The data acquisition system
was from TandS Equip. Eletr., São Carlos (with a
constant sampled time of 0.75s).

Statistic Cr iter ia of Performance
To performance analysis of the different digital
filters were used the relative mean error Rµ
(Equations 6 and 7), and the variance of it 2

Rσ
(Equation 8); important parameters to analysis and
comparisons between digital fil ters (Smith, 1999):
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N is total number of points in each assay, z(t) is
value fil tered by one of the analyzed algorithms
and θ(t) is theoretical value (or an “ ideal” fil ter)
yield by Fast Fourier Transform (FFT). FFT
removes components with frequencies over
(1/(NF*∆t)), where NF is the number of points
considered in the previous and posterior time
around the present data value and ∆t the constant
interval between two adjacent points.

RESULT S AND DISCUSSION

Implementation and Validation of Smoother
Term )'( DDI λ+  of Equation 5 yields a tri- or
pent-diagonal matrix of order N to a smoother of
first or second order, respectively. The algorithms
from Press et al. (1996), were used to solve both
the problems. Smoother algorithm was
implemented using Microsoft Visual Basic 6.0;
due to characteristic of the linear system (tri- or
pent-diagonal NxN matrix), its resolution and,
therefore, the processing of the algorithm was
relatively fast (using 1-GHz Pentium PC). Fig. 2
shows the “ in-house” software interface of
smoother algorithm inserted in the supervisory
system of the process to five values of λ
previously chosen by user for experimental data
post-treatment.

Compar ison between the Different Algor ithms
for On-line Filter ing
Due to noisy characteristic of pH and temperature
signals, filters were developed for on-line
processing (as described, both signals were inputs
to the pH control algorithm). Figs. 3 and 4
compared the on-line performance of the filters
analyzed with regard to FFT for pH signals.
Figs. 3 and 4 showed the practically equivalent
performances of the filter based on NNs and the
first order smoother. Temperature data sets
showed same behavior, being omitted for
concision. To the smoother (first and second
order), supply of noisy data set was done in a
gradual form, that is, its temporal window grew
during the assay. It was observed that the
computational processing started to be harmed by
N > 5000 points. In this case, a moving window
would have to be used to compose the input data.
Fig. 5 presents the smoother response to one of
temperature data sets (using a moving window of N
= 3000 points). In this case good performance of the
cited smoother for on-line fil tering was observed.
Fig. 6 compares control action calculated by
GMC-Fuzzy algorithm using original noisy data or
previously on-line filtered  (employing filters
based on NNs to the pH and temperature signals).
Both assays were realized in bench-scale
enzymatic reactor over the same conditions:
regulatory problem, pH = 9.5 (set-point) and
controlled temperature of 50 ºC.
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Figure 2 - Interface of smoother implemented in the “in-house” supervisory system.
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Figure 3 - Relative mean error Rµ  (pH signals).
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Figure 4 - Variance of relative mean error 2
Rσ   (pH signals).

It was observed that trajectory of titration flow rate
calculated by the control algorithm was smoothed
when pH and temperature signals were previously
filtered, i.e., the control action (titration addition,
NaOH 1 N) became smoother.
Fig. 7 compared the values inferred by the kinetic-
neural hybrid model when pH and temperature
data were supplied to the model in the noisy form
or earlier filtered by the algorithm based on NNs.
There was no relevant difference between values
inferred by the kinetic-neural model when the
signals were noisy or previously fil tered. This
occurred because the hybrid model was trained for
four pH values (7, 8, 9 and 10) and to infer
reaction rates at intermediate pH values it
interpolated (Sousa Jr. et al., 2003). This
interpolation procedure for intermediate pH values
reduced the influence of noise on the final
inference results: if the noise intervened in the
prediction of the model, the curves of distribution
of peptides along time would be noisy (or at least
they would diverge from the expected theoretical
values), what was not observed. Nevertheless, the

effect of the filters on the control action was
noticeable.
The low sensitivity of the NNs state inference with
respect to noise observed here was one of the
desirable properties of MLP (“Multilayer
Perceptron”) networks used in the hybrid model
(Nelles, 2001). Anyway, it was possible from
these simulations to verify that previous filtering
of the signals improved the GMC-Fuzzy
performance (Fig. 6), without affecting the
predictions of the state inference of the hybrid
algorithm (Fig. 7).
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Figure 7 - MWD along time using either noisy or previously filtered signal (To the
employed scale, the curves of the values inferred with noisy signals are
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CONCLUSIONS

The smoother algorithm here implemented,
validated with the process in study, could be
extended to data post-treatment of other processes
(with constant intervals of sampling). The filters
based on NNs were implemented in the on-line pH
control system, promoting a smoother control
action and did not affecting the MWD inference.
First order smoother also provides good results for
on-line filtering with the considerable advantage
of require just one parameter defined by the user
(λ). Finally, in the case of the process here studied,
characterized by a fast dynamics, both filters fitted
the necessities of the process for on-line
applications: fast processing, composing its
temporal window only with previous and current
data (without delay in the response).
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RESUMO

A hidrólise parcial de proteínas do soro de queijo,
realizada por enzimas imobilizadas em suporte
inerte, pode alterar ou evidenciar propriedades
funcionais dos polipeptídeos produzidos,
aumentando assim suas aplicações. O controle do
pH do reator de proteólise é de fundamental
importância para modular a distribuição de pesos
moleculares dos peptídeos formados. Os sinais de
pH e temperatura util izados pelo algoritmo de
controle e inferência de estado podem estar
sujeitos a ruído considerável, tornando importante
sua fil tragem. Apresentam-se aqui resultados da
implementação, no sistema de monitoramento do
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processo, de algoritmo suavizador, que utiliza
mínimos quadrados com penalização para o pós-
tratamento dos dados. Compara-se ainda o
desempenho de diferentes algoritmos na fil tragem
em tempo real dos sinais utilizados pelo sistema de
controle, a saber: redes neurais artificiais, média
móvel e o sobredito suavizador.
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