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Abstract: Epilepsy is a noncontagious brain abnormality, which causes electrical distraction and strains the 

neural system. Generally, epilepsy is treated and diagnosed through continuous examination and 

interpretation of the electroencephalography (EEG) signals. This is a very time-consuming and tedious job. 

Further, it is subjected to observational errors and observer variability. Hence, the development of an efficient 

automatic alarm system to recognize epileptic seizure signals is of important concern. The objectives of the 

present study are to investigate deep learning based long short term memory (LSTM) networks for the 

classification of epileptic EEG signals using time-frequency analysis. Additionally, a comparative investigation 

is carried out to evaluate the various state-of-the-art feature selection and classification models for automatic 

classification of EEG signals for Epilepsy detection. Features based on statistics, entropy, and fractal were 

extracted from both the time domain and frequency domain. The extracted features were supplied to LSTM 

networks and traditional machine learning models for epileptic EEG classification. High classification 

accuracy of 100% (under hold out and 10-fold protocol) and 99.80% (under 10-fold protocol) is achieved by 

the proposed LSTM strategy followed by the Back Propagation Artificial Neural network (BPANN) which 

achieves 99.6% classification accuracy when all the 150 EEG biomarkers were used as input to the classifier 

HIGHLIGHTS 
 

• A hybrid approach using time frequency analysis and deep learning for risk stratification of epileptic 

seizure is proposed. 

• An extensive comparative study of various machine learning and feature selection techniques is 

conducted.  

• Implemented andevaluatedthedeep learning based long short-term memory networks. 
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under 10-fold cross-validation technique. Further, when the top 30 most relevant features selected by 

different feature selection techniques are used for classification, the proposed approach achieves similar 

performance followed by BPANN which reports 99.4% classification accuracy when combined with the Relief 

F feature selection technique. 

Keywords: EEG; epileptic seizure; risk stratification; deep learning; long term short memory networks; 

machine learning. 

INTRODUCTION 

Epilepsy is the fourth most common neurological disruption which initiates abnormal excessive electrical 

discharge inside the brain of a patient causing a malfunction in the nervous system [1]. World Health 

Organization reported that approximately 50 million people of the world population suffer from this agonizing 

disease. The prime cause of Epilepsy may be brain impairment from prenatal or perinatal injuries, head 

infection due to severe injury, and strokes that restrict the oxygen supplies to the brain [2]. There are several 

imaging techniques like computed tomography (CT), magnetic resonance imaging (MRI), positron emission 

tomography (PET) and single photon emission computed tomography (SPECT) that can be used to detect 

epilepsy and other brain-related functional anomaly. Though, these are costly procedures which require 

additional complex settings and medicine intervention. Some of them also suffers from lack of temporal 

resolution. Tracking of epileptic events efficiently with respect to the time is a prime diagnostic trait for its 

clinical evaluation.Therefore, the most typical and cost-effective modality to capture and characterize the 

complex brain signal is electroencephalography (EEG). The EEG possesses excellent temporal resolution 

hence become the most suitable modality for epilepsy detection. Continuous examination and interpretation 

of the EEG signals can be a time-consuming and tedious job for clinicians. Hence a precise automatic alarm 

system is required for the long-term investigation and treatment of an epileptic patient. Recent studies based 

on modern computational approaches have proved their significance in detecting diseases and disorders 

related to human body organs. The various machine learning and deep learning techniques were involved 

not only for screening complex structural and functional deficiencies e.g., breast cancer, brain anomalies, but 

also track and assist human being to perform daily-life movement-related activities in case they are bed-

ridden [3, 4, 5, 6]. This article investigates long short-term memory (LSTM) deep learning networks for the 

classification of epileptic EEG signals using time-frequency features. Different feature selection techniques 

are implemented and evaluated to determine relevant EEG biomarkers which can be used for the 

identification of Epilepsy. Further, we implement and evaluate the various state-of-the-art classification 

models for automatic classification of EEG signals for Epilepsy detection. 

Related Work 

In this subsection, research work concern to epileptic EEG database from the University of Bonn is 

discussed. The database used in this work consists of five sets (Set A-E) of EEG signals. Set A and B were 

related to the normal subject’s EEG signals. On the other handset C, D and E were related to epileptic 

patient’s EEG signals [7]. More information about this database is available in a later subsection. 

Bhardwaj and coauthors, (2016) [8] reported a unique technique for epileptic detection using genetic 

programming. In this study, EEG data were decomposed with empirical mode decomposition, and 

constructive genetic programming (CGP), standard genetic programming (ST-GP), and semantic search 

based genetic programming (SEM-GP) was used as a classifier. CGP showed better performance than other 

classifiers. Feature selection technique based on epileptic seizure detection is reported in [9]. Firstly, Haar, 

Daubechies, Bi-orthogonal, and Coiflet discrete wavelet coefficients were extracted from EEG signals. 

Wavelet-based statistical, fractal, and entropy features were then calculated. Fisher score, Relief F, and 

information gain were used for feature selection followed by classification using least squares-Support vector 

machine (SVM). A simple random sampling with a sequential feature selection approach for epileptic EEG 

signal classification is proposed in [10]. Max, Min, Mean, Median, Mode, first quartile, second quartile, range, 

and standard deviation were statistical features extracted in this study. Classification accuracy of 99.90% 

was achieved to distinguish set A vs set E. Kabir and coauthors (2016) [11] reported epileptic seizure 

identification using the Optimum Allocation Technique (OAT). Statistical features were extracted after 

reducing the segment size using OAT. Logistic Model Trees (LMT), Multinomial Logistic Regression (MLR) 

with ridge estimator, and SVM were used as a classifier. The performance of the LMT classifier is found to 

be higher than the other two classifiers achieving 95.33 % accuracy. Zamir, (2016) [12] has reported Linear 
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Least Squares Processing (LLSP) based feature extraction technique for classification of seizure from EEG 

signals. Author found logistic regression, IB1, IB5, and decision tree with J48 algorithm as efficient classifiers 

according to the assessment of performance. A weighted complex networks based community structure 

identification of epileptic and nonepileptic signals was reported in [13]. Eight different combinations were 

made to classify in this study. Weighted complex network and statistical methods based attributes were 

calculated. Least Square SVM (LS-SVM), k-means, Naïve Bayes, and k -nearest neighbor classifier were 

utilized for classification. In their work, the LS-SVM classifier achieved the highest average accuracy of 98%. 

Sharma and coauthors [14] reported epileptic seizure detection using Analytic Time-Frequency Flexible 

Wavelet Transform (ATFFWT) with Higuchi algorithm based fractal dimension estimation. Here also, eight 

different group-wise classification problems were formed. Fractal dimension based 17 features were 

extracted and three features were selected using the student t-test. The LS-SVM with RBF kernel was used 

as a classifier. They reported classification accuracy of 100% for three classification problem groups.  

Mutlu, (2018) [15] has proposed simple Hilbert vibration decomposition based detection of an epileptic 

seizure. LS-SVM with linear, polynomial, and RBF kernel were used as a classifier. The best classification 

accuracy of 97.66% was achieved by SVM with the RBF kernel. Lahmiri, (2018) [16] has reported an 

estimation technique for the classification of healthy and epileptic patients using Generalized Hurst Exponent 

(GHE). They tested the significance of Hurst Exponent using the Kruskal-Wallis test, Wilcoxon test, and 

student t-test.  Statistical features, Hurst exponent demonstrated good ability to distinguish between control 

subjects and epileptic patient’s EEG signal. Automatic epileptic seizure detection and prediction system are 

reported in [17]. In this work, EEG signals were preprocessed and decomposed with Multiscale Principal 

Component Analysis (MSPCA), Empirical Mode Decomposition (EMD), Discrete Wavelet Transform (DWT), 

and Wavelet Packet Decomposition (WPD). Features such as the mean, average power, and standard 

deviation of the coefficients, the ratio of absolute mean values, skewness, and kurtosis were extracted for 

classification. Epileptic seizure classification using 4096 sample points of EEG and LSTM networks is 

proposed in [18]. An average test accuracy of 91.25% was achieved by them with an area under receiver 

operating characteristics (AUC) of 0.9582. Subasi and coauthors [19] reported a comparative investigation 

of hybrid SVM based epileptic seizure classification techniques. In their work, DWT based features like mean, 

average power, standard deviation, and the ratio of absolute mean values were extracted from detail and 

approximation coefficients. Particle swarm optimization (PSO) and genetic algorithm (GA) based features 

selection techniques were combined with the SVM classifier. Classification accuracy of 99.38% was achieved 

with PSO based hybrid SVM. Akyol, (2020) [20] has proposed a stacking ensemble based deep neural 

network (DNN) based epileptic seizure identification technique. In this, input features set were normalized 

and 10-fold cross-validation was used for training and test data set reservation. They achieved an average 

classification accuracy of 97.17%. EEG classification for detection of Epileptic Seizures using locality 

preserving projections based feature selection was proposed by [21]. Classification precision of 98.5% is 

reported in differentiating interictal and ictal EEG signals. In another work, hybrid multi-class SVM is proposed 

for recognizing epilepsy and an accuracy of 96.5% was reported [22]. Fuzzy classifiers based epileptic 

seizure detection approaches were proposed in [23]. In this work, DWT based temporal and spatial features 

were extracted from EEG signals. For inter-ictal and ictal EEG signals classification, the highest accuracy of 

99.38% was reported using the fuzzy rough nearest neighbor (FRNN). A new feature generation method 

based on 1D octal pattern for the classification of epileptic seizure is proposed by Tuncer and coauthors in 

[24]. For selecting EEG features, neighborhood component analysis was used and KNN did the classification. 

This study reported an accuracy of 96%. 

In summary, techniques such as SVM, KNN, CGP, decision tree, ensemble classifier, naïve Bayes, and 

ANN have been used for classification. However, a systematic study for the evaluation of various machine 

learning components is missing. In particular, feature extraction, feature selection, and classifications which 

are important components of risk stratification in machine learning paradigm need further investigation. 

Choice of appropriate machine learning models plays a critical role in Epileptic seizure classification. Further, 

a more extensive study is required to determine relevant biomarkers for the identification and quantification 

of epilepsy from EEG signals. Current developments on deep learning based approaches have gained wide 

attention in data classification problems including their incorporation in computer-aided disease 

diagnosis/classification. However, popular deep learning models such as convolutional neural network (CNN) 

use very intricate networks and need a large number of samples for training to achieve superior performance 

which may not be clinically feasible. This article proposes a deep learning based long short-term memory 

network and time-frequency analysis for the classification of epileptic EEG signals. On contrary to other 
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approaches, LSTM networks are capable of learning long-term dependencies making them widely accepted 

in a wide variety of problems. The contributions of this article are summarized in the following sub-section. 

Contributions of the paper 

The contributions of this study are briefed out as follows: 

1. An extensive comparative study of various feature selection techniques and 23 machine learning 

paradigms for risk stratification of epileptic seizure using EEG is carried out and discussed. 

2. We implement and evaluate deep learning based long short-term memory networks and time-

frequency analysis for classification of epileptic EEG signals using EEG features. The results obtained are 

compared with those obtained in 1. 

3. Combination of statistical and DWT based composite features is utilized. Different feature 

combinations are evaluated for determining the most relevant biomarkers which can be used to identify 

Epilepsy from EEG signals. 

4. The proposed models are evaluated under different data division protocols so that the best machine 

learning model can be selected.   

The rest of the article is organized in the following sections. The material and methods section presents 

the data description, feature extraction, feature selection, and proposed methodology used in the present 

work. Further, the next section presents the results and discussions and at the end conclusions and future 

scopes are presented. 

MATERIAL AND METHODS  

Data Description and Preprocessing  

An open-source EEG database is used in this study, which has been collected from the University of 

Bonn, Germany. This database has five sets (sets A-E) with each data set containing 23.6 seconds long 100 

single-channel EEG segments. The artifacts due to muscular activities and eye movements were removed 

during the selection of segments from recorded EEG signals. Five healthy control subjects and five patients 

were volunteers for this database. The set A and B were taken from healthy control subjects with eyes open 

and eyes closed situation respectively. The rest set of the database was taken from the epileptic patients. 

EEG data segments of set C were collected from the hippocampal formation of the opposite hemisphere of 

the brain. The set D contains the segmented EEG signals within the epileptogenic zone. The EEG segments 

of sets C and D were taken during no ictal activities. The segments of set E were taken from all recording 

sites during ictal activities which exhibit epileptic seizure. This database was recorded using a 128 channel 

amplifier system with a 12-bit analog to digital converter. The sampling rate of the data acquisition system 

was set to 173.61 Hz. A band-pass filter of 0.53-40Hz was used for preprocessing of this open-source 

database. A detailed discussion of this database is available in Andrzejak and coauthors [7].  

Feature Extraction 

Feature extraction provides a better solution to distinguish classes. In the present work, both time domain 

and frequency domain features are extracted. Eleven statistical features are calculated such as mean, 

kurtosis, skewness, entropy, variance, standard deviation, min, max, range, crest factor, and form factor. Two 

fractal features are also acquired using the Katz algorithm and the Higuchi algorithm. Complexity measuring 

features such as Approximate Entropy (ApEn) and Permutation Entropy are also determined. These fifteen 

features are extracted from all 500 segments (100 segments from each set). Each segment has 4097 discrete 

values in the time domain. Many researchers in this field also reported that DWT based features, which have 

shown significant improvement in classification [9, 14, 25]. Hence nine different DWT are studied in this work. 

The third level wavelet decomposition is performed using nine wavelet functions such as Daubechies (db4), 

Biorthogonal (bior3.1 and bior3.2), Coiflets (Coif1, Coif2, Coilf3, Coif4, and Coif5), and Haar. The third level 

decomposition of EEG signal generates approximation and detailed coefficients. Further, from the generated 

approximation coefficients, the same fifteen features mentioned above are calculated. Table 1 shows the 

feature category and name of all features with their corresponding notation for the present work. Thus in the 

present work, a total of 150 features have been extracted using without DWT and with DWT.  
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Table 1. Concise table of features extracted from preprocessed EEG signals 

Feature title 

Feature Category 

Without 
wavelet 

With wavelet (3rd level approximate coefficient) 

db4  
bior 
3.1  

bior 
3.2 

Coif 1 Coif 2  Coif 3 Coif 4 Coif 5  Haar 

Mean F1 F16 F31 F46 F61 F76 F91 F106 F121 F136 
Kurtosis F2 F17 F32 F47 F62 F77 F92 F107 F122 F137 
Skewness F3 F18 F33 F48 F63 F78 F93 F108 F123 F138 
Entropy F4 F19 F34 F49 F64 F79 F94 F109 F124 F139 
Variance F5 F20 F35 F50 F65 F80 F95 F110 F125 F140 
StD1 F6 F21 F36 F51 F66 F81 F96 F111 F126 F141 
Min F7 F22 F37 F52 F67 F82 F97 F112 F127 F142 
Max F8 F23 F38 F53 F68 F83 F98 F113 F128 F143 
Range F9 F24 F39 F54 F69 F84 F99 F114 F129 F144 
Crest factor F10 F25 F40 F55 F70 F85 F100 F115 F130 F145 
Form factor F11 F26 F41 F56 F71 F86 F101 F116 F131 F146 
Katz FD2 F12 F27 F42 F57 F72 F87 F102 F117 F132 F147 
ApEn3 F13 F28 F43 F58 F73 F88 F103 F118 F133 F148 
Higuchi FD2 F14 F29 F44 F59 F74 F89 F104 F119 F134 F149 
PermutationEn3 F15 F30 F45 F60 F75 F90 F105 F120 F135 F150 

1StD=Standard Deviation;2FD=Fractal Dimension; 3En=Entropy 

Feature Selection 

The next task after feature extraction is feature selection. The feature selection process helps to identify 

the most relevant features from a large number of attributes. It reduces the computation complexity as well 

as improves or maintains the performance of the classification technique. Feature ranking and feature subset 

evaluation are the two most popular techniques of feature selection. They are also known as filter method 

and wrapper method respectively. In the filter method, each feature is evaluated according to its prediction 

performance on the target class. On the other hand, the wrapper evaluates the subset of features and selects 

the best subset from all generated subsets. Feature selection using filter-based approaches is faster than 

wrapper approaches, which suffer from high computational costs. In the present work, six different feature 

ranking selection techniques, namely Gain Ratio (GR), Information Gain (IG), one R (1R), Correlation (P), 

Relief F (RLF), Symmetrical Uncertainty (SU) were employed to select 30 most relevant features. The 

performances of these feature ranking techniques have been elaborated in the results and discussions 

section. Further, we also evaluate a hybrid feature selection technique by combining the mentioned six filter 

based techniques using the concept of Robust Rank Aggregation [26]. In this method, six different feature 

selection techniques are integrated in an unbiased manner to determine the final rank of individual features. 

This is illustrated in figure 1. In this method, the extracted 150 features from EEG signals are supplied to 6 

different feature selection modules. Each module generates a list of 150 ranked features. The ranked features 

by six different feature selection techniques are then combined to determine the final rank.  

Classification 

This subsection presents brief information about classifiers used in the present work. The proposed 

methodology and performance evaluation is also discussed.  

Back-Propagation Artificial Neural Network (BPANN) 

BPANN is the simplest type of multilayer Artificial Neural Network, which has one input layer, several 

hidden layers, and one output layer [27]. The learning rule for back-propagation is based on gradient descent. 

In this network, the weights are initialized with a random value which is changed during the training process. 

In the present work, Mean Squared Error (MSE) is used as a performance function, and Scaled Conjugate 

Gradient (SCG) Back Propagation (BP) is used as a training function. A total of thirty neurons are placed in 

the hidden layer. The initial learning rate is set to 0.01. 

Decision Trees 

Decision trees are one of the fastest and simple classifiers. It contains branches and two types of nodes 

namely root node and leaf node. The prediction of response is done using split criterion in the root node and 

finally, the branches reach the leaf node by following the decision in the root node [28]. In the present work, 
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three different types of decision trees are utilized for classification namely simple, medium, and complex tree 

with maximum numbers of splits 4, 20, and 100 respectively. 
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Figure 1. Hybrid feature ranking scheme using Robust Rank Aggregation (RRA)  

Discriminant Analysis 

In this classification technique, the Gaussian distribution related parameters of each class are estimated 

using some fitting function and a priori probabilities of the belonging of class [29]. In the present work, both 

linear and quadratic discriminant classifiers are analyzed which create linear and nonlinear boundaries 

between classes respectively. 

Logistic regression 

It is a binary classification technique based on the sigmoid function [30]. A threshold level is defined and 

based on this threshold level, the class of predictors is decided. This multivariate analysis model estimates 

the presence and absence of characteristics of different classes based on predictor variables [31]. 

Support Vector Machine (SVM) 

The SVM is the most popular supervised machine learning technique in the field of classification, 

regression, and estimation. In this technique, the machine learns several hyperplanes using training data set 

that separates one class from another. The highest margin maintaining hyperplane from members of one 

class to that of another is selected as the best hyperplane for classification [32]. In SVM classifier, the kernel 

function maps the input to the desired dimensional space [33]. In this work, several SVM with different kernel 

functions are used for classification namely linear SVM, quadratic SVM, cubic SVM, fine Gaussian SVM, 

medium Gaussian SVM, and coarse Gaussian SVM. Table 2 shows the parameters used for different SVM 

classifiers. 
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k-nearest neighbor (kNN) 

K-nearest neighbor is another machine learning technique that performs classification tasks using some 

distance measure from the nearest sample (K denotes the number of neighbors). Euclidean distance, 

Chebyshev distance, Manhattan distance are some common distance measures used in the k-nearest 

neighbor classification technique [34]. In this work, the value of k is set to k=1, 10, and 100 with different 

distance measures such as Euclidean, cosine, cubic, and weighted for binary classification. This results in 

different K-NN types based on the number of neighbors and distance measures used namely, fine K-NN 

(K=1, distance metric: Euclidean), medium K-NN (K=10, distance metric: Euclidean), coarse K-NN 

(K=100,distance metric: Euclidean), cosine K-NN (K=10, distance metric: cosine), cubic K-NN (K=10, 

distance metric: Minkowski (cubic)) and weighted K-NN (K=10, distance metric: Euclidean with squared 

inverse distance weight). 

      Table 2.Different types of SVM and the parameters used in this study 
Type of classification method           Kernel type Description 

Linear SVM Linear kernel 𝑘(𝑥𝑖 , 𝑥𝑗) =  (𝑥𝑖  . 𝑥𝑗) 

Quadratic SVM Polynomial kernel  𝑘(𝑥𝑖 , 𝑥𝑗) =  (1 +  𝑥𝑖  . 𝑥𝑗)2 

Cubic SVM Polynomial kernel 𝑘(𝑥𝑖 , 𝑥𝑗) =  (1 +  𝑥𝑖  . 𝑥𝑗)3 

Fine Gaussian SVM Gaussian Radial Basis Function 𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
||𝑥𝑖 −  𝑥𝑗  ||2

2𝜎2
) , 𝜎 = 0.75 

Medium Gaussian SVM Gaussian Radial Basis Function 𝑘(𝑥𝑖 , 𝑥𝑗) =  exp (−
||𝑥𝑖 −  𝑥𝑗  ||2

2𝜎2
) , 𝜎 = 3 

Course Gaussian SVM Gaussian Radial Basis Function 𝑘(𝑥𝑖 , 𝑥𝑗) =  exp (−
||𝑥𝑖 −  𝑥𝑗  ||2

2𝜎2
) , 𝜎 = 12 

Ensemble Classifiers 

Ensemble classifiers are the combination of more than one classifier. Random forest, AdaBoost, 

bagging, and Rotation Forest are some techniques for generating the Ensemble classifiers [35]. In this study, 

ensemble classifiers based on bagging, discriminant learner, nearest neighbor, and RUSBoost are used in 

this classifier group to evaluate the classification model.  

Proposed methodology 

An LSTM network is a kind of recurrent neural network (RNN) that can gain knowledge of long-term 

dependencies among time steps of sequence data. It includes self-loops to create paths where the gradient 

can flow for a prolonged period [36]. The proposed model using the LSTM network and time-frequency 

analysis of EEG signals for epilepsy detection is shown in figure 2. In LSTM network, the input is in form of 

several data points, time steps, or variables. Thus feature extraction step is first carried out as shown in figure 

2. Both time and frequency domain features are extracted in this step. Firstly, fifteen time-domain statistical, 

fractal, and entropy based features namely mean kurtosis, skewness, entropy, variance, standard deviation, 

min, max, range, crest factor, form factor, Katz algorithm based fractal feature, Higuchi algorithm based 

fractal feature, approximate entropy, and permutation entropy are extracted from each segment. Further, 

each EEG segment is subjected to third-level wavelet decomposition resulting in approximate and detailed 

coefficients A3 and D3 for each EEG segment. The same fifteen features (statistical, fractal, and entropy 

based features) are extracted from approximate coefficients A3 of each EEG segment. The wavelet based 

feature extraction process is performed using nine wavelet functions namely Daubechies (db4), Biorthogonal 

(bior3.1 and bior3.2), Coiflets (Coif1, Coif2, Coilf3, Coif4, and Coif5), and Haar one after another. Hence, 

fifteen frequency domain features (statistical, fractal, and entropy based features) from nine different wavelet 

functions are extracted. 

The time-domain and frequency-domain are fused. Thus, in the present work, a total of 150 features 

have been extracted resulting in a feature vector of size 500 x 150 followed by feature selection as discussed 

in feature extraction and feature selection subsection respectively. The feature selection stage generates top 

30 most relevant features resulting in a feature vector of size 500 x 30. The extracted/selected features are 

supplied to LSTM networks which are utilized for learning the high-level representations of the epileptic and 

non-epileptic EEG signals. In this study, a bidirectional LSTM layer is employed because it looks at the 

sequence in both forward and backward directions. The total number of hidden units used are set to 250. 
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The details of conventional LSTM can be found in [37]. The output of LSTM layer is supplied to a fully 

connected layer which multiplies the extracted variables by a weight matrix followed by bias addition. A 

softmax function is then applied to the input and a classification layer returns an output category of supplied 

EEG signal i. e. epileptic or non-epileptic. The maximum numbers of epochs were set to 50 and initial learning 

rate of 0.01 is used in experiments. 

The proposed prototype model for risk stratification of epileptic seizure using EEG signals and 

comparative investigation strategy is shown in figure 3. The proposed model is divided into two main parts 

as shown by a vertical discontinuous line. The left side of the model is depicted as an offline system and the 

right side of the model represents the online system. Both systems in the proposed model have two similar 

processes i.e. preprocessing and feature extraction. In offline systems, a total of 150 statistical and wavelet-

based features are extracted. The next consecutive process after feature extraction in the offline system is 

feature selection which is used here to rank the relevant attributes in ascending order. 
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Figure 2. Proposed classification scheme using time-frequency analysis and classification using LSTM network. 

The top 30 features are selected for the training of the classifier by using the known class to supervise 

the model and training parameters were generated. In an online system, the unknown EEG signals without 

class labels are preprocessed to remove the artifacts and noises which is a similar process as in an offline 

system. The next step is to extract the top 30 features selected in the offline process as relevant attributes. 

The trained classifier then takes the live decision as a normal control or epileptic seizure for the supplied 

unknown EEG test sample. An extensive comparative study of various feature selection techniques, 23 

machine learning paradigms, and LSTM network for risk stratification of epileptic seizure using EEG is carried 

out and discussed. 

Performance evaluation 

In the present work, two Cross-Validation techniques namely Holdout and k-fold are utilized for 

performance evaluation. For performance evaluation of different classifiers, the whole sample of data is 

partitioned using K-fold data division protocol into two parts namely training and testing set. In this protocol 

whole set is divided into K subsets. (K-1) subsets are used as training sets and the remaining one set is used 
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for testing of the trained model. This testing process is repeated K times. Each subset is used as a testing 

set once in a K-fold Cross-Validation (CV) process. To compare the performance of different classifiers, five 

statistical parameters are evaluated namely classification accuracy, sensitivity, specificity, Area Under the 

receiver operating characteristic curve (AUC), and Matthew’s Correlation Coefficient (MCC). These 

performance measures can be explained and mathematically expressed as below: 

Classification Accuracy (CA): It is a statistical measure that shows the percentage of test cases correctly 

classified out of the total number of cases. 

𝐶𝐴(%) =
𝛿𝑡𝑝+𝛿𝑡𝑛

𝛿𝑡𝑝+𝛿𝑓𝑛+𝛿𝑡𝑛+𝛿𝑓𝑝
× 100     (1) 

Sensitivity: It is a statistical measure that shows that the total percentage of positive cases (detection of 

epileptic seizure signal) is correctly classified. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(%) =
𝛿𝑡𝑝

𝛿𝑡𝑝+𝛿𝑓𝑛
× 100      (2) 

Specificity: It is a statistical measure that shows that the total percentage of negative cases (detection of non-

epileptic signal) is correctly classified. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(%) =
𝛿𝑡𝑛

𝛿𝑡𝑛+𝛿𝑓𝑝
× 100      (3) 

Area Under the receiver operating characteristic curve (AUC): It is a statistical measure that shows average 

measure using a combination of sensitivity and specificity. 

𝐴𝑈𝐶(%) =
1

2
(

𝛿𝑡𝑝

𝛿𝑡𝑝+𝛿𝑓𝑛
+

𝛿𝑡𝑛

𝛿𝑡𝑛+𝛿𝑓𝑝
) × 100     (4) 
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Figure 3.Proposed methodology for comparative investigation of different machine learning models and LSTM. 
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Matthew’s Correlation Coefficient (MCC): This statistical measure was introduced by biochemist Brian W. 

Matthews in 1975. It is very useful when the two classes i.e. positive and negative are different in size. 

𝑀𝐶𝐶(%) =
𝛿𝑡𝑝×𝛿𝑡𝑛−𝛿𝑓𝑝×𝛿𝑓𝑛

√(𝛿𝑡𝑝+𝛿𝑓𝑝)(𝛿𝑡𝑝+𝛿𝑓𝑛)(𝛿𝑡𝑛+𝛿𝑓𝑝)(𝛿𝑡𝑛+𝛿𝑓𝑛)
× 100   (5) 

The symbol 𝛿  with subscript TP, TN, FP, and FN denotes true positive, true negative, false positive, and 

false negative respectively. MATLAB® software platform has been used to evaluate the performance of all 
classifiers. 

Statistical significance analysis 

Statistical significance analysis provides evidence of sufficient difference among the extracted features 

corresponding to different groups [38]. There are two types of statistical significance analysis tests namely 

parametric test and Non-parametric test. In this study, we have used the Independent sample t-test at a 95% 

confidence interval. The significance value (p-value) of less than 0.05 is considered to be significant. 

RESULTS AND DISCUSSIONS 

This section presents the results of various experiments discussed in the material and methods section. 

Initially, a comparative investigation of various feature selection and traditional machine learning techniques 

for epileptic seizure detection under different data division protocols is presented and discussed. Then we 

present and discuss the results of the proposed LSTM strategy. The results are also discussed in light of 

other related studies. Table 3 illustrates the results of attribute selection techniques. In the present work, six 

filter based attributes ranking techniques are chosen for the study along with one hybrid method called robust 

rank aggregation (RRA). Out of 150 attributes, the top 30 prime attributes with their ranking order are 

tabulated in Table 3. It is clearly shown that the ranking order of attributes is not similar for all feature selection 

techniques. For example, feature F5 is ranked in the first position by SU feature selection, second position 

by GR and 1R feature selection, third position by IG feature selection, and eighth position by RRA. F5 is not 

ranked in the top 30 positions by Relief F and correlation feature selection. Thus, the study and evaluation of 

different feature selection techniques are extremely important to determine the most important biomarkers. It 

is found that the features F6 and F5 both are the most important features, selected very often in the top 5 

features by the majority of feature selection techniques like Gain Ratio (GR), Information Gain (IG), One R 

(1R), and Symmetrical Uncertainty (SU). The selected top 30 features from each attribute selection technique 

are utilized for epileptic seizure detection from EEG signals using machine learning approaches. It is also 

perceived from Table 3 that all the feature selection techniques select the F6, F21, F66, F81, F96, F111, 

F126, and F141 features in the top 30 features accordingly, these 8 features can be considered as most 

relevant biomarkers. 

  Table 3.Prime features selected by different attribute selection techniques 

Method Prime attributes 

Gain Ratio (GR) 
F6, F5, F65, F21, F20, F80, F111, F110, F125, F81, F66, F126, F95, F96, F141, F24, 

F140, F114, F99, F144, F84, F129, F143, F98, F128, F68, F36, F35, F23, F69 

Information Gain (IG) 
F6, F125, F5, F21, F36, F95, F35, F81, F20, F80, F126, F110, F96, F111, F51, F66, F65, 

F140, F141, F50, F39, F127, F22, F54, F9, F112, F67, F12, F97, F82 

One R (1R) 
F6, F5, F20, F65, F66, F21, F81, F80, F96, F95, F125, F126, F110, F111, F140, F141, 

F127, F22, F112, F39, F7, F50, F97, F144, F82, F51, F37, F69, F67, F84  

Correlation (P) 
F96, F81, F111, F51, F21, F126, F66, F6, F141, F36, F12, F9, F39, F54, F22, F112, F69, 

F99, F82, F97, F114, F24, F84, F52, F129, F67, F7, F144, F37, F38 

Relief F (RLF) 
F6, F81, F21, F96, F111, F51, F141, F66, F126, F36, F9, F7, F69, F144, F99, F54, F12, 

F84, F24, F39, F114, F129, F22, F52, F8, F112, F82, F38, F67, F119 

Symmetrical 

Uncertainty (SU) 

F5, F6, F65, F126, F21, F20, F111, F81, F125, F80, F110, F96, F66, F95, F141, F140, 

F24, F114, F36, F84, F99, F35, F144, F129, F51, F50, F143, F98, F128, F68 

Robust Rank 

Aggregation (RRA) 

F6, F21, F81, F126, F96, F111, F66, F5, F141, F36, F51, F69, F7, F20, F99, F9, F144, 

F84, F80, F65, F112, F114, F125, F129, F24, F97, F39, F12, F22, F8 
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Table 4 shows the performance of twenty-three different classifier models employing all the 150 features 
extracted along with a 10-fold cross-validation data division technique. It is found that the classification 
accuracy of 99.60% (see Table 4) is achieved by BPANN without using any feature selection technique. 
Table 5 shows the performance of twenty-three different classifier models with top thirty features obtaining 
from six different feature ranking techniques namely Gain Ratio (GR), Information Gain (IG), One R (1 R), 
Correlation (P), Relief F (RLF), Symmetrical Uncertainty (SU) respectively and RRA using 10-fold cross-
validation protocol.  

   Table 4.Performance parameters of classifier models using 10-fold cross-validation for 150 features 

Classifier Model 
Statistical parameter (%) 

Accuracy  Sensitivity Specificity AUC MCC 

BPANN 99.60 98.00 100.00 99.00 98.75 
Complex TREE 97.20 90.00 99.00 94.50 91.12 
Medium TREE 97.20 90.00 99.00 94.50 91.12 
Simple TREE 97.20 90.00 99.00 94.50 91.12 
Linear Discriminant 94.80 78.00 99.00 88.50 83.18 
Quadratic Discriminant 96.60 92.00 97.75 94.88 89.42 
Logistic Regression 94.20 76.00 98.75 87.38 81.15 
Linear SVM 96.20 85.00 99.00 92.00 87.84 
Quadratic SVM 97.20 90.00 99.00 94.50 91.12 
Cubic SVM 97.80 94.00 98.75 96.38 93.10 
Fine Gaussian SVM 82.60 13.00 100.00 56.50 32.68 
Medium Gaussian SVM 97.60 95.00 98.25 96.63 92.56 
Coarse Gaussian SVM 95.00 78.00 99.25 88.63 83.86 
Fine KNN 97.20 90.00 99.00 94.50 91.12 
Medium KNN 95.80 82.00 99.25 90.63 86.52 
Coarse KNN 90.80 56.00 99.50 77.75 69.33 
Cosine KNN 97.60 90.00 99.50 94.75 92.39 
Cubic KNN 95.40 80.00 99.25 89.63 85.20 
Weighted KNN 96.20 85.00 99.00 92.00 87.84 
Ensemble Bagged 98.00 93.00 99.25 96.13 93.69 
Ensemble Subspace Discriminant 97.80 91.00 99.50 95.25 93.03 
Ensemble Subspace KNN 97.00 94.00 97.75 95.88 90.74 
Ensemble RUSBoosted 98.40 97.00 98.75 97.88 95.04 

 

   Table 5.Performance of classifier models using Gain Ratio (GR), Information Gain (IG), 1R, Correlation (P),  Relief F                                                                                       
(RLF) and Symmetrical Uncertainty (SU) feature selection with 10-fold cross validation for top 30 attributes 

Classifier Model 
Classification Accuracy (%)  

GR IG 1R P RLF SU RRA 

BPANN 98.80 98.40 98.00 98.80 99.40 99.00 98.60 
Complex TREE 95.80 98.40 97.20 98.00 98.80 97.00 97.60 
Medium TREE 95.80 98.40 97.20 98.00 98.80 97.00 97.60 
Simple TREE 96.60 98.60 97.40 98.00 98.80 97.80 98.40 
Linear Discriminant 93.80 93.60 93.60 94.40 94.60 93.80 94.40 
Quadratic Discriminant 95.00 96.00 96.20 96.20 96.00 95.00 95.80 
Logistic Regression 95.80 96.40 95.40 96.80 96.20 96.00 96.40 
Linear SVM 95.60 96.60 96.20 96.20 97.20 95.60 96.00 
Quadratic SVM 97.20 96.80 96.80 96.40 97.60 97.00 96.00 
Cubic SVM 97.60 96.80 97.40 97.00 98.00 97.60 97.00 
Fine Gaussian SVM 96.40 97.20 96.60 97.20 96.60 97.80 97.40 
Medium Gaussian SVM 95.80 97.00 96.40 97.00 97.80 96.60 97.00 
Coarse Gaussian SVM 94.40 94.80 95.00 95.00 95.40 94.20 94.60 
Fine KNN 95.80 97.60 96.40 96.80 97.20 96.60 96.80 
Medium KNN 97.00 97.40 97.20 97.40 97.60 97.40 97.20 
Coarse KNN 92.60 93.00 92.60 92.80 93.20 92.40 92.60 
Cosine KNN 97.60 97.20 97.00 97.20 97.80 97.60 97.20 
Cubic KNN 96.40 97.40 96.80 97.20 97.60 97.20 97.20 
Weighted KNN 96.40 97.20 97.20 97.40 97.80 97.40 97.20 
Ensemble Bagged 96.60 97.20 96.80 97.20 98.60 97.40 97.60 
Ensemble Subspace Discriminant 96.20 96.80 96.00 94.00 94.40 96.40 96.40 
Ensemble Subspace KNN 96.60 97.20 96.60 96.20 96.20 97.60 95.40 
Ensemble RUSBoosted 96.00 97.20 97.20 97.60 98.40 97.60 98.00 
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It was found that the RLF feature selection technique outperforms others by achieving the highest 

classification accuracy of 99.40% using BPANN classifier. Due to superior performance of RLF feature 

selection, the features selected by RLF i.e., F6, F81, F21, F96, F111, F51, F141, F66, F126, F36, F9, F7, 

F69, F144, F99, F54, F12, F84, F24, F39, F114, F129, F22, F52, F8, F112, F82, F38, F67, and F119 are 

further used in remaining of the study. We further validated the discriminating efficacy of the above features 

with the statistical significance analysis using independent sample t-test. Table 6 shows statistical 

significance analysis results for the top 30 features selected by the RLF feature selection technique. We 

found that all the 30 features are statistically significant with a p-value less than 0.05 (95% confidence 

interval). 

 Table 6. Mean ± standard deviation values and p-value for top 30 features selected by Relief F method using t-test  
Feature Title of Feature Feature category Non epileptic Epileptic p-value (t-test) 

F6 StD1 Without Wavelet 54.574 ± 33.375 306.610 ± 147.977 <0.05 
F81 StD1 Coif 2 Wavelet 136.203 ± 90.633 729.184 ± 329.986 <0.05 
F21 StD1 db4 Wavelet 136.157 ± 90.826 729.208 ± 330.474 <0.05 
F96 StD1 Coif 3 Wavelet 136.375 ± 90.471 730.092 ± 330.129 <0.05 
F111 StD1 Coif 4 Wavelet 136.649 ± 90.382 730.621 ± 331.155 <0.05 
F51 StD1 bior 3.2 Wavelet 196.498 ± 118.013 1143.077 ± 555.808 <0.05 
F141 StD1 Haar Wavelet 131.110 ± 88.718 683.711 ± 308.305 <0.05 
F66 StD1 Coif 1 Wavelet 134.819 ± 90.332 716.884 ± 323.974 <0.05 
F126 StD1 Coif 5 Wavelet 136.468 ± 90.150 731.408 ± 332.858 <0.05 
F36 StD1 bior 3.1 Wavelet 201.257 ± 117.405 1202.329 ± 610.692 <0.05 
F9 Range Without Wavelet 400.418 ± 233.248 1858.960 ± 868.355 <0.05 
F7 Min Without Wavelet -205.945 ± 101.040 -948.910 ± 503.488 <0.05 
F69 Range Coif 1 Wavelet 882.290 ± 552.511 3647.675 ± 1632.654 <0.05 
F144 Range Haar Wavelet 857.653 ± 539.826 3581.980 ± 1676.918 <0.05 
F99 Range Coif 3 Wavelet 897.410 ± 562.214 3728.136 ± 1688.663 <0.05 
F54 Range bior 3.2 Wavelet 1305.559 ± 812.797 6271.412 ± 3051.622 <0.05 
F12 Katz FD2 Without Wavelet 1.418 ± 0.126 2.001 ± 0.300 <0.05 
F84 Range Coif 2 Wavelet 897.649 ± 558.697 3733.122 ± 1707.020 <0.05 
F24 Range db4 Wavelet 893.136 ± 554.148 3742.190 ± 1725.102 <0.05 
F39 Range bior 3.1 Wavelet 1342.128 ± 817.821 6832.527 ± 3446.937 <0.05 
F114 Range Coif 4 Wavelet 902.941 ± 560.472 3745.340 ± 1710.224 <0.05 
F129 Range Coif 5 Wavelet 899.495 ± 562.766 3748.610 ± 1725.480 <0.05 
F22 Min db4 Wavelet -464.240 ± 234.065 -1918.140 ± 914.141 <0.05 
F52 Min bior 3.2 Wavelet -668.595 ± 357.692 -3172.909 ± 1668.122 <0.05 
F8 Max Without Wavelet 194.472 ± 159.614 910.050 ± 440.926 <0.05 
F112 Min Coif 4 Wavelet -468.460 ± 232.153 -1913.124 ± 912.996 <0.05 
F82 Min Coif 2 Wavelet -465.474 ± 230.820 -1906.426 ± 927.025 <0.05 
F38 Max bior 3.1 Wavelet 653.116 ± 559.209 3406.175 ± 1727.706 <0.05 
F67 Min Coif 1 Wavelet -456.662 ± 221.994 -1825.306 ± 888.709 <0.05 
F119 Higuchi FD2 Coif 4 Wavelet 1.98 ± 0.015 1.997 ± 0.010 <0.05 

1StD=Standard Deviation; 2FD=Fractal Dimension 

Furthermore, we have evaluated the proposed technique (LSTM) for all the extracted 150 features and 

top 30 most relevant RLF features. Training and test dataset is obtained by splitting the whole dataset using 

three data division techniques i. e. holdout (33%), 5-fold cross-validation & 10-fold cross-validation. The 

training performance of the proposed approach is shown in Figure 4. It is found that the training accuracy 

reaches 100% before the 10th iteration itself. Tables 7 and 8 show the results of the proposed LSTM 

approach for training and testing respectively. The results on test data from Table 8 indicate that the LSTM 

network combined with time-frequency features attains 100% classification accuracy under hold out and 5-

fold, and 99.8% for 10-fold data decision protocols. Thus, the proposed LSTM performed superior to the 

traditional machine learning techniques to detect epileptic events using the whole 150 as well as top 30-RLF 

features for holdout, 5-fold, and 10-fold protocols.Though the BPANN performs close to the proposed 

technique achieving 99.6% and 99.4% classification accuracies for all and the RLF selected features 

respectively, these were attained only for 10-fold cross validation scheme. The Receiver Operating Curve 

(ROC) for the proposed approach on test data under holdout and 5-fold data division protocol is shown in 

Figure 5. The area under ROC curve is 1 for a significance value of p<0.001 which supports our findings. 

Finally, we compare the performance of the proposed approach in light of some related studies. Table 9 

shows the performance summary of some recent and previously reported epileptic seizure detection from the 

EEG signal. The results are arranged in ascending order of publication year. It is observed from Table 9 that 

neural networks, linear SVM, least square SVM, and Logistic Model Trees (LMT) have been utilized by 
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different research groups. It is concluded that our proposed work outperforms others in terms of classification 

performance in differentiating epilepsy and non-epileptic EEG signals. Compared to some of the recent 

studies by Subasi and coauthors [19], Akyol [20], Ayesha and coauthors [23], Sujatha [22], and Tuncer and 

coauthors [24], it is observed that the proposed study achieves better performance than the existing ones. 

Our outcomes reflect that the proposed approach has potentials to act as a significant tool to assist clinicians 

for detecting epilepsy. However, the present study was based on a single repository of epileptic EEG signals. 

Therefore, for building up the trust of medical professionals in such systems, larger and distinguished 

databases of epileptic patients with improved ground truth validations are needed in future. Also, this study 

may be expanded from unimodal to multimodal analysis in the future where patient’s physiological data can 

be acquired from more than one sources and analyzed together.  
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Figure 4.Training performance of the proposed approach: (a) Accuracy (%) (b) Loss. 

 
Figure 5. Receiver operating characteristics of the proposed approach for holdout and 5-fold data division protocol on 
test data. 

    Table 7. Performance of proposed approach using LSTM (training) 

Number of features 

Data division 
protocol 

Statistical parameter (%) 

 Accuracy  Sensitivity Specificity AUC MCC 

150 
Holdout 100.00 100.00 100.00 100.00 100.00 
5-fold 100.00 100.00 100.00 100.00 100.00 
10-fold 100.00 100.00 100.00 100.00 100.00 

Top 30 most 
relevant features as 
shown in Table 6 

Holdout 100.00 100.00 100.00 100.00 100.00 
5-fold 100.00 100.00 100.00 100.00 100.00 
10-fold 100.00 100.00 100.00 100.00 100.00 
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  Table 8. Performance of proposed approach using LSTM (testing) 

Number of features 

Data 

division 

protocol 

Statistical parameter (%) 

Accuracy  Sensitivity Specificity AUC MCC 

150 

Holdout 100.00 100.00 100.00 100.00 100.00 

5-fold 100.00 100.00 100.00 100.00 100.00 

10-fold 99.80 100.00 99.75 99.88 99.38 

Top 30 most relevant features 
as shown in Table 6 

Holdout 100.00 100.00 100.00 100.00 100.00 

5-fold 100.00 100.00 100.00 100.00 100.00 

10-fold 99.80 100.00 99.75 99.88 99.38 

  Table 9. Comparison of the present work with the existing studies for classification of epileptic seizure 

Author and Year 
Preprocessing and Feature Extraction 
technique 

Classifier 
Classification 
Accuracy (%) 

Kabir  et al., (2016) [11] 
Optimum Allocation Technique (OAT) based 
Statistical features 

Logistic model trees 
(LMT) 

95.33 % 

Swami et al., (2016) [39] DTCWT, Energy, STD, Shannon Entropy  
General Regression 
Neural Network 

>96.86% 

Peker et al., (2016) [40] DTCWT Complex valued NN 99.33% 

Diykh et al., (2017) [13] 
Weighted complex network combine with 
time-domain statistical feature 

Least Square SVM 97.90% 

Mutlu, (2018) [15] 
Hilbert Vibration Decomposition (HVD) 
based feature 

SVM with RBF kernel 97.66% 

Acharya et al., (2018) [41] Z-Score normalization, zero mean, STD Deep CNN 88.67% 

Subasi et al., (2019) [19] 
DWT based features and Particle Swarm 
Optimization (PSO) 

PSO based Hybrid SVM 99.38% 

Akyol, (2020) [20] Min-max normalization 
Stacking ensemble based 
DNN 

97.17% 

Sujatha , (2020) [22] Approximate entropy and statistical method SVM 96.5% 

Ayesha et al., (2021) [23] DWT based temporal and spatial features 
Fuzzy rough nearest 
neighbor (FRNN) 

99.38% 

Tuncer et al., (2021) [24] 1-D octal pattern and DWT KNN 96% 

Present Work 
Statistical and DWT based  composite 
feature 

LSTM with 30 most 
significant features 

100% 

CONCLUSION 

In this work, the combined time domain and frequency domain features were evaluated for risk 

stratification of epileptic seizure EEG signals from normal EEG signals using deep learning based LSTM 

network and 23 different traditional machine learning classification strategies. Total of 150 features were 

extracted from EEG signals. Different feature ranking techniques were also utilized to determine reliable EEG 

features. The results of this study show that only 30 features are sufficient to achieve classification accuracy 

equal to that of using all 150 features. The most relevant EEG biomarkers for epilepsy detection were found 

to be F6, F81, F21, F96, F111, F51, F141, F66, F126, F36, F9, F7, F69, F144, F99, F54, F12, F84, F24, F39, 

F114, F129, F22, F52, F8, F112, F82, F38, F67 and F119 using Relief F approach. It is found that standard 

deviation, range, min, max, Katz fractal dimension, and Higuchi fractal dimension are the selected biomarkers 

from the different feature categories. The proposed work can be used for an epileptic seizure alarm system 

which will assist medical professionals for detecting epilepsy and reduce their burden and observational 

errors. Though this work was done by considering a single dataset with less number of subjects, we will 

validate our work using some distinguished larger databases. We also expanded our work on multimodal 

cognitive state classification. 
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