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1.	 Introduction

Amaranthus palmeri is a weed native to the Sonora Desert in northern Mexico and 
southwestern United States (Sauer, 1957). Distribution also occurs in some countries in 
South America (Heap, 2021). Although the center of origin of this species is an arid region, 
A.  palmeri is widely distributed and adapted to different climatic conditions (Iamonico, 
Mokni, 2017) and is considered one of the most feared weeds in the world (Singh et al., 2018). 
The rapid growth, high seed production capacity, and competitive nature of this species 
make A. palmeri very problematic in terms of control (Chahal et al., 2015). In addition, it is a 
host plant for parasitic nematodes (Kaspary et al., 2021). Therefore, owing to its direct and 
indirect damage to crops, A. palmeri is a weed of worldwide economic importance.

A. palmeri infestation can cause yield losses of more than 68% in soybean, 65% in 
cotton, and 91% in corn (Klingaman, Oliver, 1994; Berger, 2015; Massinga et al., 2003). 
A. palmeri has many herbicide-resistant biotypes, including simple, crossed, and multiple 
biotypes that are to the main herbicides used in agriculture (Burgos et al., 2001; Gossett 
et al., 1992; Culpepper et al., 2006; Netto et al., 2016). In the United States, a biotype 
resistant to seven mechanisms of action was identified (Montgomery et al., 2019).

Because of these characteristics, A. palmeri is considered a quarantined pest in 
several countries including in Brazil (MAPA, 2019). The first occurrence of A. palmeri 
in Brazil was in Mato Grosso in 2015 (Andrade Júnior et al., 2015). A likely hypothesis 
for the presence of this species in Brazil is the import of cotton pickers contaminated 
with A. palmeri seeds (Schwartz-lazaro et al., 2017; Gazziero, Silva, 2017). According 
to the Normative Instruction INDEA/MT No. 3 dated December 10, 2020, this weed is 
an officially controlled pest in Brazil. However, the risk of spread remains high.

Therefore, studies on the spread potential of A. palmeri in Brazil and worldwide are 
necessary to identify regions with climatic potential and the behavior of species in the 
face of predicted climate change. Such studies can be performed using ecological niche 
modeling. Using biological parameters, the space–time dynamics of A. palmeri can be 
projected in a simplified and realistic manner (Lima et al., 2009). Ecological modeling 
software such as CLIMEX has been used to project the potential distribution of species 
of economic interest and to determine the limiting factors for spatial distribution based 
on climatic variables. Using CLIMEX, it is possible to analyze the potential occurrence of 
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weeds, climate change, and seasonal assessments, and identify 
suitable areas according to the season (Kriticos et al., 2015). 
Studies of this nature support technological innovations for 
understanding the relationship between invasive alien species 
and climate variability (Cavalcante et al., 2020).

The CLIMEX model for A. palmeri is available in the 
literature (Kistner, Hatield, 2018). However, to date, 
information regarding the occurrence of this weed, 
particularly in Brazil, has been lacking. Consequently, non-
assertive control decisions may occur because the model 
predicts inaccurate areas for spatial distribution or areas 
with low suitability. We have also updated the geographic 
distribution of A. palmeri and potential areas for 2050, 
2070, and 2100 while evaluating the weekly growth rate. 
This study aimed to design a new model of the potential 
areas for A. palmeri in Brazil and worldwide under current 
and future climatic conditions (2050, 2070, and 2100).

2.	 Material and methods 

2.1  Distribution of Amaranthus palmeri

Distribution data for A. palmeri were compiled from the 
Global Biodiversity Information Facility (GBIF) (http://
www.gbif.org) and the available literature. The data were 
used to build a spatial distribution map of A. palmeri 
and validate the model. A total of 422 occurrences were 
identified across North America, South America, Europe, 
Africa, and Asia (Figure 1).

2.2  Climex Modeling

CLIMEX is a semi-mechanistic modeling package that 
predicts areas of climate suitability for species (e.g., insects 
and plants) based on ecophysiological and distributional data 
(Kriticos et al., 2015). The Ecoclimatic Index (EI) indicates the 

general climatic suitability of a location for the occurrence of 
the species. Ecoclimatic Index EI = 0 indicates an unsuitable 
location site for the species to survive, 0 < EI < 30 indicates 
a partially suitable location for the occurrence of the species 
and 30 ≤ EI ≤ 100 indicates a location with high suitability, 
the potential for survival and reproduction. To project the 
potential distribution, mechanistic and semi-mechanistic 
models use biological information of the species, together 
with climatic variables and environmental stress tolerance, to 
define areas of climatic suitability and highlight the limiting 
factors for the potential distribution of the species (Kumar 
et al., 2014; Kearney and Porter, 2009). Knowledge of the 
location of a species can be used to predict tolerable climatic 
conditions (Silva et al., 2020). The CLIMEX software was used 
to elaborate on the A. palmeri model, which considers climatic 
conditions as the main limiting factor for species occurrence.

2.3  Tuning parameters

Our objective was to adjust the growth and stress indices 
in CLIMEX by updating the modeling values published by 
Kistner and Hatield (2018) using biological information 
and the current distribution of A. palmeri in Brazil (Table 1).

2.3.1  Temperature Index

The lower limit temperature for species survival (DV0) 
was adjusted to the new value of 5 °C because germination 
of A.  palmeri occurs above this temperature (Ward et al., 
2013). The lowest optimal temperature (DV1) was adjusted 
according to the results of (Guo, Al-Khatib, 2003), where 
strong growth of A. palmeri was demonstrated in the range of 
30 °C. The upper ideal maximum temperature (DV2) was set 
at 34 °C. The maximum threshold temperature (DV3) was 
set at 42 °C to be consistent with the occurrence of A. palmeri 
in the Sonoran Desert.

Amaranthus palmeri

Figure 1 - Global distribution of Amaranthus palmeri Global Biodiversity Information Facility (http://www.gbif.org) and the 
available literature

http://www.gbif.org
http://www.gbif.org
http://www.gbif.org
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2.3.2  Moisture Index

A value of 0.1 is associated with permanent wilting of 
plants. However, as A. palmeri has a deep root system, the 
lowest moisture threshold (SM0) was set at 0.1 (Forseth et 
al., 1984). The lowest optimum moisture content (SM1) was 
set at 0.2 to reflect the regions with the highest occurrence of 
the species. The upper optimum moisture content (SM2) and 
upper threshold (SM3) were set to 1.2 and 2, respectively, to 
reflect field observations in Mato Grosso, Brazil.

2.3.3  Cold Stress Index

The temperature threshold for cold stress (TTCS) was 
set at -8 °C and the stress accumulation rate (THCS) at 
-0.00025 week-1 to demonstrate the dormancy of A. palmeri 
seeds when exposed to low temperature (Rana et al., 2017).

2.3.4  Heat Stress Index

The heat stress threshold (TTHS) was set at 42 °C and 
the heat stress accumulation rate (THHS) was set at 0.05 
week-1 to allow the best fit of the model in sites of high 
A. palmeri occurrence.

2.3.5  Dry Stress Index

Considering the low relative humidity areas where 
A. palmeri occurs worldwide, the drought stress threshold 
(SMDS) was set at 0.1, and the drought stress accumulation 
rate (HDS) was set at -0.001 week-1 to allow the survival 
of this species throughout the Sonoran Desert and Africa.

2.3.6  Wet Stress

Increased soil water content is meaning factor for the 
growth and fertility of several weed species including 
A. palmeri. In this sense, the wet stress parameter (SMWS) 
was set to two to quantify the stress. The stress accumulation 
rate (HWS) was set at 0.002 weeks -1. These values were in 
agreement with the known distribution of A. palmeri.

2.3.7  Degree Days

Amaranthus palmeri requires 1,100 °C days to develop 
(Chahal et al. 2018). For this reason, we set the degree days 
per generation (PDD) at 1,100 °C days.

2.4  Climate data

The weather data used to manage the program were 
obtained from the CliMond 10. The A1B scenario and the 
CSIRO-Mk3.0 (CS) global climate model (CS) from the Center 
for Climate Research, Australia, were used to model the 
predicted climate change scenarios for 2050, 2070, and 2100. 
This model’s choice is justified because it lies between scenarios 
A1 and A2. The A1B model considers rapid population and 
global economic growth and balances all energy sources 
(Kriticos et al. 2012). According to Meehl et al. (2007), A1B is 
the most pessimistic scenario for the period up to the middle 
of the 21st century (2050), compared to scenarios A1 and A2. 
The A1B scenario assumes greater greenhouse gas emissions, 
and consequently, a greater climate impact. It is estimated 
that the average temperature increases by about 1.8°C and 
carbon emissions are concentrated at about 580 ppm. By the 
end of the century (2100), the A1B scenario projected an 
average temperature increase of approximately 2.8 °C and CO2 

Table 1 - CLIMEX index values used for modeling Amaranthus palmeri

Index Parameter
Low 

values 
Best-fit values High values Unit

Moisture

SM0 = lower soil moisture threshold 0.09 0.1 0.11 -

SM1 = lower optimum soil moisture 0.18 0.2 0.22 -

SM2 = upper optimum soil moisture 1.08 1.2 1.32 -

SM3 = upper soil moisture threshold 1.8 2 2.2 -

Temperature

DV0 = lower threshold 4 5 6 °C

DV1 = lower optimum temperature 29 30 31 °C

DV2 = upper optimum temperature 33 34 35 °C

DV3 = upper threshold 41 42 43 °C

Cold stress 
TTCS = temperature threshold -7.2 -8 - 8.8 °C

THCS = stress accumulation rate - 0.00022 - 0.00025 - 0.00027 week-1

Heat Stress
TTHS = heat stress temperature threshold 37.8 42 46.2 °C

THHS = heat stress temperature rate 0.045 0.05 0.055 week-1

Dry stress
SMDS = soil moisture threshold 0.09 0. 1 0.11 -

HDS = stress accumulation rate - 0.0009 - 0.001 - 0.0011 week-1

Wet Stress 
 

SMWS = soil moisture threshold 1.8 2 2.2 -

HWS = stress accumulation rate 0.0018 0.002 0.0022 week-1

Degree days PDD = Degree days per generation 1080 1100 1120 °C
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emissions of 720 ppm. Vera et al. (2006) reported increased 
precipitation in South America (subtropical regions) during 
the summer and decreased rainfall during the winter.

The weekly growth index (GIW) of A. palmeri was also 
analyzed in the Brazilian regions where the species occurs. 
Monthly climate variation data were obtained from the 
Climate Research Unit (CRU) (CRU TS3.23, Norwich 
(http://www.cru.uea.ac.uk/cru/data/hrg.htm] Time-Series 
(TS), version 3.23). This dataset contains all the information 
necessary for use in CLIMEX software. The model was 
created from January 1 to December 31, 2016, the year 
following the discovery of the species in Brazil. To determine 
the growth potential of the species throughout the year and 
identify possible limiting factors, the weekly growth rate 
was estimated for the municipalities of Campos de Júlio, 
Sapezal, Tapurah, and Ipiranga do Norte in Mato Grosso, 
Brazil, from the meteorological station in the municipality 
of Comodoro-MT, which was chosen because it is closer to 
the cities studied and contains all data records.

2.5  Model validation

The reliability of this model was tested using the 
highest occurrence of A. palmeri in North America and 
the Ecoclimatic Index (EI) projected for the current climate. 
In addition, the areas of occurrence of A. palmeri in Brazil 
were considered for model validation.

2.6  Sensitivity analysis

For the sensitivity analysis, the parameters used in this 
model were adjusted to the high and low values proposed 
by the CLIMEX user guide. We used temperature values 
+/- 1 °C, soil moisture +/- 10% and rate parameters +/- 
10%. The determination of these values is based on the 
best fit proposed by the software, the uncertainty of 
the  parameters, and the parameter range of experienced 
CLIMEX users (Kriticos et al., 2015). The objective of the 
sensitivity analysis was to identify the parameters with 
the greatest influence on the results of the model. The EI 
was used to indicate potential area changes (unsuitable, 
suitable, and highly suitable) for A. palmeri.

3.	 Results

The potential distribution of A. palmeri in the current 
climate followed a known record of occurrence (Figure 1). 
Our model showed 100% agreement with the current 
distribution of A. palmeri in the validation area in North 
America (Figure 2). The current distribution of A. palmeri is 
primarily in tropical and subtropical zones. For the United 
States of America, Mexico, Argentina, Germany, and Brazil, 
the model correctly projected suitable areas at all sites of 
A. palmeri infestation (Figure 2 A). Large  areas that were 
climatically suitable were observed in South, Central, 
and North America (except for Canada). On the African 

continent, especially in sub-Saharan Africa, some countries 
such as South Africa, Ethiopia, Kenya, Gabon, Mozambique, 
Cameroon, Central African Republic, Democratic Republic 
of Congo, Nigeria, Ghana, Uganda, Burkina Faso, Zimbabwe, 
Botswana, Namibia, and Madagascar have highly favorable 
areas for A. palmeri establishment (Figure 2).

In Europe, the regions with high climatic suitability for 
A. palmeri were Portugal, Spain, Russia, Poland, France, 
Italy, Austria, and Germany (Figure 2 A). On the Asian 
continent, the model projected areas in India, Myanmar, 
Thailand, and Indonesia where weeds have not yet occurred. 
China has a large area suitable for A. palmeri. In Oceania, 
suitable areas exist for A. palmeri on most of the continent, 
and projections have highlighted suitable areas in Australia 
and New Zealand (Figure 2A).

To predict climate change, we projected the potential 
global distribution of A. palmeri for 2050, 2070, and 
2100. The projections showed a variation in the potential 
distribution of A. palmeri compared to the areas where the 
species is present. We observed that all Brazilian regions 
are suitable for the occurrence of A. palmeri, based on the 
EI. In Figure 3 B (2050), 3 C (2070), and 3 D (2100), in 
comparison with Figure 3 A (current climate), we can see 
decreases in highly suitable areas in Brazil due to climate 
change. Projections for suitable areas for A. palmeri remain 
constant worldwide. However, the reduction was more 
significant in Brazil, Mexico, Australia, and sub-Saharan 
Africa (Figure 3 B, C, and D).

For the annual analysis of the occurrence of A. palmeri 
using the GIW projected by the CLIMEX model, we 
highlighted the Brazilian municipalities of Campos de Júlio, 
Sapezal, Tapurah, and Ipiranga do Norte, Midwest Brazil 
(Figure 4 and 5A). The GIW model showed growth potential 
for A. palmeri throughout the year, with a sharp decline in 
the driest months from July to August (Figure 5 A and B).

Unsuitable

High Suitable

(A)

(B)

Suitable

Figure 2 - (A) New model for Amaranthus palmeri and (B) Model 
proposed by Kistner and Hatfield (2018) for the current climate

http://www.cru.uea.ac.uk/cru/data/hrg.htm
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Our sensitivity analysis results showed that five 
parameters, that is, SM2, SM3, DV0, DV1, and TTHS, 
were more sensitive to A. palmeri because they showed an 
increase or decrease in area using the higher or lower values 
proposed by the CLIMEX software (Figure 6). Considering 
the change in area for each suitability class, that is, 
unsuitable, suitable, and highly suitable, we observed that 
some more sensitive parameters had a greater effect on the 
potential distribution of weeds.

Soil moisture, SM3, and DV0 were more sensitive to 
changes in suitable areas, whereas SM2, SM3, DV0, and 
TTHS were more sensitive to changes in the areas that were 
highly suitable (Figure 6 B and C). For unsuitable areas, 
changing DV0 and TTHS had a greater influence on the 
model (Figure 6 A). DV0 and DV1 were the parameters most 
sensitive to temperature in areas suitable for A. palmeri. 
As for stress rates only for the TTHS, we observed greater 
sensitivity in the unsuitable, suitable, and highly suitable 
areas (Figure 6).

4.	 Discussion

Brazil is divided to by the Tropic of Capricorn; 92% of 
the territory is in the intertropical zone, and the remaining 
8% is in the southern temperate zone (Kandir, 1995). 
Owing to the territorial extension of Brazil, several climatic 
conditions can be observed, including equatorial, tropical, 
highly tropical, humid tropical, semi-arid, and subtropical 
(Pommer, Barbosa, 2009).

Amaranthus palmeri is an aggressive weed that can 
rapidly adapt to different environments. Adaptability 
of this weed has been shown in the United States and 

Unsuitable

High Suitable

(A)

(B)

(C)

(D)

Suitable

Figure 3 - Potential distribution of Amaranthus palmeri for 
current climate (A) and 2050 (B), 2070 (C), and 2100 (D) climate 
change in the world

Brazil

Comodoro City

Mato Grosso States

Campos de Júlio City Sapezal
City

Ipiranga do Norte City

0 2.400 4.000 9.600

Km

N

S

W E

Figure 4 - Map of the Brazilian cities with species (Campos de Júlio, Sapezal, Tapurah, and Ipiranga do Norte) and the municipality 
where the meteorological data came from



6

 Ferreira SR, Silva AF, Silveira OR, Santos JCB, Batista AC, Araújo FHV, Santos JB, Silva RS

Adv Weed Sci. 2023;41:e020230023 https://doi.org/10.51694/AdvWeedSci/2023;41:00017

Argentina. This species grows in environments where the 
temperatures are below the ideal temperatures for growth 
(Tuesca et al., 2016; Steckel, 2007). However, owing to 
the physiological evolution of C4 metabolism, A. palmeri 
has adapted to tropical environments with high radiation 
and temperatures, such as Brazil (Ward et al., 2013). 
The adaptability of A. palmeri may be related to its dioecious 
nature, which favors crossing and genetic diversity (Ward 
et al., 2013). These characteristics contribute to the rapid 
adaptation of this species to new environments.

We developed a potential distribution model for the 
current climate that identified favorable areas for A. palmeri 
(Figure 2 A). These changes occurred in the northern and 
midwestern regions of Brazil. The greater suitability of 
these environments for A. palmeri may be related to changes 
in the water balance in these regions. Temperature is not a 
limiting factor in these regions. Therefore, it can be inferred 
that the key factor for the adequacy of areas for A. palmeri 
in the Brazilian territory is mainly related to the increase 
in temperature (2.1 °C) and decrease in precipitation (14%) 
predicted by the model until 2100 (Suppiah et al., 2007; 
Chiew et al., 2009).

Kistner and Hatfield (2018) evaluated the potential 
distribution of A. palmeri under current and future climate 
conditions and observed an increase in climate suitability 
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in the Northern Hemisphere. According to these authors, 
this change can be attributed mainly to the increase in 
temperature, which favors the establishment and potential 
for expansion. In contrast, in the Southern Hemisphere, 
there was no difference between future climate scenarios 
and current climate conditions. According to the authors, 
the model used (CNRM-CM5) indicated a significant 
decrease in climate suitability in Mato Grosso, Brazil 
because of cumulative hot-humid stress values above 100, 
which is the CLIMEX limit for lethal conditions. However, 
the results obtained using our model differed from those 
reported by Kistner and Hatfield (2018). Our results 
have indicated that environmental conditions such as 
temperature and humidity do not cause lethal stress to 
A. palmeri. This divergence can be attributed to the better 
fit of the model with the new values, which represents a 
more robust model and allows for clear alignment with 
the recent occurrence of A. palmeri in the model proposed 
by Kistner and Hatfield (2018) (Figure 2).
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In the weekly growth model (Figure 5 A), better climatic 
conditions were observed for A. palmeri during periods 
of higher relative humidity. Iamonico and Mokni (2017) 
have reported similar conditions for the development of 
A. palmeri. However, higher growth rates associated with 
periods of higher rainfall do not indicate that A. palmeri is 
adapted to soggy or excessively humid soils. The state of 
Mato Grosso is characterized by a predominance of oxisols 
with medium texture (Seplan, 2003). This type of soil 
is generally characterized by a high rate of soil water 
infiltration (Vilarinho et al., 2013). The higher average 
temperatures during the day contributed to soil water 
evaporation. Therefore, the environment during the rainy 
season was found to be favorable for the development of 
weeds, which are important in the context of agriculture. 
June to September is characterized by low rainfall, high 
temperatures, and a low amount of soil water availabilty 
(Sotta et al., 2017).

Amaranthus palmeri has been classified as a quarantine 
weed. Therefore, a series of restrictions are imposed for 
control. Graphics were prepared based on field observations 
made during the inspection of infested areas in Mato Grosso 
(Figures 4 and 5). It is important to note that the field 
observations generated graphs of growth rates. The space-
time growth index was calculated using the method 
proposed by Kriticos et al. (2015) and the results were based 
only on climate and did not consider non-climatic factors, 
such as the occurrence of pests, diseases, soil types, and 
biotic interactions. However, our GIW results for A. palmeri 
indicate the potential for new approaches to understanding 
seasonal variations in climatic conditions.

The weekly growth rate of A. palmeri is one of the main 
factors contributing to the control of this weed. Plants can 
grow between 2.5 cm and 4 cm per day under ideal 
conditions, making post-emergence herbicide application 
extremely difficult (Sellers et al., 2003). In Brazil, there are 
reports of growth up to 6 cm/d (Gazziero, Silva, 2017).

Future climate impact analysis using the CSIRO-Mk3.0 
Global Climate model and the A1B scenario resulted 
in variation in the potential distribution of A. palmeri 
worldwide. With predicted climate change, the potential 
areas for A. palmeri may vary across territorial regions. 
The  projections indicated that areas more suitable for 
A.  palmeri above the equator. However, in the short-term 
(2050 and 2070), regions with high climate suitability 
remained constant and declined until 2100.

In the long term (2100), the results of this study showed 
a moderate increase in areas with climatic suitability 
for A.  palmeri in countries of the Northern Hemisphere 
(Figures 3 B, C, and D). With climate change, an increase 
in the number of potentially suitable areas in cold regions 
is expected (Bourdôt et al., 2012). Canada, Russia, and 
the United States stand out for the expansion of new 
areas suitable for A. palmeri. However, countries in the 
Southern Hemisphere, such as Brazil, Australia, and Africa, 
will have reduced areas that are highly suitable for this 

weed. This  reduction in areas with high suitability has 
mainly occurred in the tropical and subtropical regions. 
With  climate change, high temperatures may cause for 
A. palmeri thermal stress (Burkett et al., 2014). In spatial 
distribution studies, uncertainties are related to the impact 
of climate change (Taylor, Kumar, 2012). Many plant 
species respond differently to climate-related evolutionary 
and adaptive processes (Franks et al., 2007).

The results of the sensitivity analysis showed that the 
upper soil moisture threshold (SM3), lower threshold 
temperature (DV0), lower optimum temperature (DV1), and 
TTHS were the most sensitive parameters in the suitable 
and highly suitable area categories (Figures 6 B and C). 
SM3 (upper soil moisture threshold) defines the upper soil 
moisture; when a higher value was used for the adjustment, 
there were increases in highly suitable areas. In contrast, 
when we used a lower value of this parameter, there was 
a decrease in highly suitable areas (Figure 6 C). With a 
change in the TTHS, we obtained greater variation in the 
suitable and highly suitable areas. We should emphasize 
that A. palmeri may be associated with regions with high 
temperatures and soils with high humidity (Ward et al., 
2013; Iamonico and Mokni, 2017). Thus, the sensitivity 
of soil moisture and heat stress temperature threshold 
parameters to the potential distribution of A.  palmeri 
were evident. Sensitivity analysis is a useful tool for 
researchers and farmers because it provides knowledge of 
the parameters that can influence the occurrence of a given 
species (Silva et al., 2020).

The current and future suitable area models represent a 
risk-warning system for Brazil. In addition to its economic 
impacts, the spread of A. palmeri can cause ecological 
problems. Because it is highly competitive, this weed can 
affect biomes such as the Amazon, resulting in biodiversity 
loss. Further research is needed to investigate the effects 
of soil type, the incidence of pests and diseases, and 
biotic interactions on the developmental potential of this 
weed. Given the adaptability of A. palmeri and the extent 
of damage it can cause, the monitoring, containment, 
and eradication (control with the use of herbicides, 
and machines with A.  palmeri seeds) of this species in 
areas at risk of invasion is of fundamental importance. 
Preventive dissemination measures in new areas and duly 
implemented eradication strategies are important for the 
proper management of this pest.

5.	 Conclusion

For the current climate, our model identified regions 
with favorable climatic suitability for A. palmeri on most 
continents. Tropical and subtropical zones in northeastern 
and western Australia are currently experiencing a reduction 
in areas that are suitable under climate change. Temperate 
zone sites have potential areas of expansion for A. palmeri in 
the northern USA, Russia, and China under climate change 
conditions. In Brazil, there has been a decrease in suitable 
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areas for the long term (2100), especially in the Midwest 
and Northeast regions.

Using ecological niche models, it is possible to analyze 
the risks to the Brazilian agricultural economy of A. palmeri. 
These results enable the identification of places with a 
greater need for preventive phytosanitary measures against 
A. palmeri, such as Mato Grosso.
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