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ABSTRACT. Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri, is one of the most 
important diseases of citrus. The use of resistant genotypes plays an important role in the management and 
control of the disease and is the most environmentally sustainable approach to disease control. Citrus 
canker incidence was recorded in an experiment on nine genotypes of the sweet orange variety ‘Pera’ 
grafted on four rootstocks. The experiment was started in 2010 and the incidence of citrus canker on the 
leaves was recorded on a quarterly basis. The incidence data from the experiment were analyzed using a 
zero-inflated Beta regression model (RBIZ), which is the appropriate method to describe data with large 
numbers of zeros. Based on the residual analysis, the data fit the model well. The discrete component of 
the explanatory variable, rootstock, was not significant as a factor affecting the onset of disease, in contrast with 
the continuous component, genotype, which was significant in explaining the incidence of citrus canker. 
Keywords: zero-inflated Beta distribution, mixture models, inflated Beta regression model, modeling proportions. 

Modelagem da incidência de cancro cítrico em folhas de laranja doce variedade Pera 

RESUMO. O cancro cítrico, causado pela bactéria Xanthomonas citri subsp. citri é uma das doenças mais 
importantes da citricultura. A utilização de genótipos resistentes à doença assume um papel importante no 
manejo e controle do patógeno, sendo essa uma medida viável ao produtor e sustentável ao ambiente. O 
conjunto de dados utilizado neste trabalho consistiu das observações obtidas de um experimento em que 
foram empregados como material vegetal, nove genótipos de Laranja doce, variedade Pera enxertado em 
quatro diferentes porta-enxertos. Este experimento teve inicio em 2010 e foram realizadas avaliações 
trimestrais para determinar a incidência de cancro nas folhas das plantas. Para a análise dos observações 
resultantes desse experimento foi utilizado a regressão Beta inflacionada de zero (RBIZ), que é a 
metodologia adequada para descrever proporções com grandes quantidades de zeros. A partir da análise 
residual, pode-se perceber que os dados se apresentaram de maneira homogênea indicando um bom ajuste 
do modelo. Para o componente discreto a variável explicativa, porta enxerto, foi significativa para o não 
aparecimento da doença, em contraste com o componente contínuo, em que a variável genótipo mostrou-
se significativa para explicar a incidência de cancro cítrico. 
Palavras-chave: distribuição Beta inflacionada no ponto zero, modelo de mistura, modelo de regressão Beta 

inflacionado, modelagem de proporções. 

Introduction 

According to Gonçalves-Zuliani, Nunes, 
Zanutto, Filho, and Nocchi (2015), citrus canker 
caused by Xanthomonas citri subsp. citri (Xcc, Schaad 
et al., 2006) is an important disease in many citrus-
producing regions of the world (Gottwald et al., 
2002). Xcc can cause disease in many commercial 
varieties of citrus, specifically sweet orange (Citrus 
sinensis L. Osbeck), resulting in significant economic 
losses to the producer. In addition to direct yield 
loss, the lesions caused by citrus canker can preclude 

the marketing of fresh fruit. In Brazil, citrus canker 
has been studied by several authors including 
Carvalho et al. (2015); Gonçalves-Zuliani et al. 
(2015) and Braido et al. (2015). The search for 
genotypes resistant to citrus canker is the most 
attractive way to control this disease as it has least 
environmental impact (Gonçalves-Zuliani et al., 2015). 

Gonçalves-Zuliani et al. (2015) aimed to evaluate 
resistance to citrus canker in nine sweet orange 
genotypes of the variety ‘Pera’ grafted on Rangpur 
lime, sunki tangerine, Cleopatra mandarin and rustic 
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orange. According to these authors, rootstock 
influenced the tolerance of the canopy to plant 
disease; in general, the rootstocks that induced less 
prolific growth in the scion showed a lower 
incidence of disease compared with the rootstocks 
that induced more vigorous growth. In this case, the 
effect was estimated from the total count of leaves 
and diseased leaves; thus, the resulting data set had a 
high proportion of zeros, that is, the data were zero-
inflated. For analysis, Gonçalves-Zuliani et al. 
(2015) used a non-parametric statistic and later 
applied Tukey’s HSD test, without taking into 
account the large proportion of zeros in the data or 
the correlation due to repeated measures. The 
conclusion was that grafted genotypes of sweet 
orange showed a range in the incidence of diseased 
leaves, with those scions on Rangpur lime rootstock 
being the most susceptible to the pathogen, possibly 
due to increased canopy vigor due to this rootstock. 

In the current experiment, the objective was to 
evaluate the functional relationship of dependent 
variables to one or more predictor variables (Neter, 
Kutner, Nachtsheim, & Wasserman, 1996). Many 
regression models have been proposed in statistical 
modeling, but the most common is the classic 
regression model or the linear model. In this case, 
the relationship between variables is described by a 
linear function assuming independence and 
normality of errors. These models, however, are 
inappropriate when the dependent variable is a rate, 
ratio, or fraction with the records contained in one 
of these limited ranges: ([0, 1), (0, 1] and [0, 1]). In 
these cases, the estimates obtained by using the 
classical regression model may exceed these limits. 
Thus, it is recommended that the response variables 
be transformed to avoid this discrepancy to allow the 
estimates to conform to the linear model. However, 
data transformation can make the interpretation of 
the model parameters difficult in relation to the 
original response. 

An alternative method to fit a regression model 
for continuous variables is to assume a probability 
distribution to describe the data. The Beta 
distribution is appropriate for modeling binary, 
zero-inflated data (0, 1). Several reports describe the 
fitting of regression models for response variables 
using the Beta distribution. For example, Ferrari and 
Cribari-Neto (2004) developed a regression model 
where the response variable was described by the 
Beta distribution and the average response was 
described by a linear predictor using a linking 
function. The authors reparameterized the Beta 
distribution to facilitate their interpretation by 

indexing using mean and dispersion parameters. 
Consequently, the model is useful when the 
dependent variable has its values in the interval (0, 
1) and they are related to other predictor variables. 
Furthermore, other researchers such as Paolino 
(2001) have used the Beta regression to compare the 
estimates obtained using Beta regression models and 
linear regression with and without transformation of 
the dependent variable. The estimates of the Beta 
distribution have significant advantages over the 
linear model in those cases where the response 
variable assumes values in the interval (0, 1). Pereira, 
Souza, and Cribari-Neto (2014) have effectively 
used the inflated Beta regression model to assess the 
administrative efficiency of Brazilian municipalities 
to compare the performance of each region with 
respect to the management of public resources. 

However, there are situations in which the 
variable of interest assumes values at one or both 
ends of the range, i.e., [0, 1), (0, 1] and [0, 1]. In 
these cases, the use of the Beta distribution is not 
feasible and a mixture model using discrete and 
continuous distributions has been recommended. 
The discrete distribution estimates the probability 
mass at zero, one, or both, and the continuous 
distribution describes the continuous component of 
the data. This type of model is known as an inflated 
model. Ospina and Ferrari (2010) introduced the 
Beta distribution inflated distributions that mix the 
Beta distribution with the Bernoulli distribution to 
estimate the mass of probability of zero, one, or 
both. This family of distributions is formed by the 
parameterization of the Beta distribution and by the 
distribution that will describe the discrete 
component. 

We propose an alternative analysis to the report 
by Gonçalves-Zuliani et al. (2015), considering an 
evaluation of genotype response due to the presence 
of correlations between the repeated observations 
and the large proportion of zeros in these data. The 
objective of this study was to apply an inflated 
regression model to describe the incidence of citrus 
canker on leaves of different genotypes of sweet 
orange, variety Pera, taking into account the 
different rootstocks and their effects on the 
susceptibility of the sweet orange genotypes to citrus 
canker. Thus, the same data set as that described by 
Gonçalves-Zuliani et al. (2015) was used here. 

Material and methods 

Experimental data 

The experiment was conducted in Paranavai, 
Paraná state, in southern Brazil (23°1'S, 50°41'W and 
467 m elevation). Nine sweet orange genotypes of 
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the variety Pera were grafted onto four rootstock 
genotypes (Table 1) and planted (2.5 × 6.0 meters). 
The trees received fertilizer containing N, P, K and 
foliar Zn and Cu following standard 
recommendation. Insecticide sprays were applied to 
control false spider mites (Brevipalpus phoencis), citrus 
rust mite (Plyllocoptruta oleivora), citrus red mite 
(Panonychus citri), psyllids (Diaphorina citri), scale 
insects (Selenaspidus articulates, Parlatoria sp., Unapis 
citri, Orthezia praelonga, Coccus sp.), fruit-fly (Ceratitis 
capitata) and orange fruit borer (Ecdytolopha 
aurantiana). Additionally, fungicide sprays were 
applied to prevent anthracnose (Colletotrichum 
acutatum) and scab (Sphaceloma fawceti), and copper 
bactericidal sprays were applied for the management 
of citrus canker (Gonçalves-Zuliani et al., 2015). 

Approximately two-year-old plants were assessed 
quarterly to determine the incidence of citrus canker 
on the leaves. Gonçalves-Zuliane et al. (2015) selected 
10 plants per genotype and four branches from each 
plant. We only used one of the evaluations to perform 
the analyses proposed. The total leaf number and the 
number of diseased leaves were counted on each 
branch such that the total sample size was n = 360. 

Statistical analysis 

The percentage incidence of canker-infected leaves 
on the different genotypes of Pera sweet orange was 
analyzed using the Beta distribution, which has been 
widely used for modeling when data are in the range 
(0, 1). However, because the incidence of citrus canker 
can take values in the interval [0, 1), it was necessary to 
make some changes in the analysis. Thus, the 
distribution that was used was the inflated Beta 
distribution following the modification suggested by 
Ferrari and Cribari-Neto (2004). 

The parameterization of the Beta distribution 
suggested by Ferrari and Cribari-Neto (2004) to 
describe a random variable Y restricted in range  
(0, 1) has a density function given by: 

 
1 (1 ) 1

y
( )f (y;  , ) y (1 y)

( ) ((1 ) )
μφ− −μ φ−Γ φμ φ = −

Γ μφ Γ − μ φ (1)

 
Thus, Y follows a Beta distribution function with 

the average parameter μ, precision φ and is denoted 
by Y  B(μ, φ). The respective mean and variance of 
Y in this parameterization are E[Y]=μ and 

Var( )Var[Y]
1

μ=
+ φ

, where Var(μ)= μ(1-μ) is the 

variance function. 
The cumulative distribution function using the 

mixture model of the Beta distribution with 
degeneration at zero, one or both is given by: 

 
{c} {c}BI (y;  , , ) I (y) (1 )F(y;  ,  )α μ φ = α + − α μ φ (2)
 
in which IA(y) is an indicator function that 

assumes the value 1 if y ∈ A, or 0 otherwise, and A is 
the set of elements for the value y = c; F(.; μ, φ) is 
the cumulative function of the Beta distribution; 
α=P(y=c) is the parameter of the mixture 
distribution 0<α<1. As BI{c} has a mass point at y = 
c, it cannot be considered completely continuous. 
Note that with a probability α, the variable Y is 
selected from a degenerate distribution at c, and 
when the probability is (1-α), the variable is selected 
from a Beta distribution. The probability density 
function of the variable Y is given by the value 
generated by the mixture model and is written in the 
following form: 

Table 1. Pera sweet orange genotypes grafted on rootstocks of Rangpur Lime, Sunki Tangerine, Cleopatra Tangerine and ‘Caipira’ Orange. 

Number  Pera genotype Rootstock Number Pera genotype Rootstock 
1 Ipigua – IAC Rangpur lime 19 Ipigua – IAC Cleopatra Tangerine 
2 IAC Rangpur lime 20 IAC Cleopatra Tangerine 
3 Bianchi Rangpur lime 21 Bianchi Cleopatra Tangerine 
4 IAC 2000 Rangpur lime 22 IAC 2000 Cleopatra Tangerine 
5 Olímpia Rangpur lime 23 Olímpia Cleopatra Tangerine 
6 EEL Rangpur lime 24 EEL Cleopatra Tangerine 
7 59 Rangpur lime 25 59 Cleopatra Tangerine 
8 58 Rangpur lime 26 58 Cleopatra Tangerine 
9 Arapongas Rangpur lime 27 Arapongas Cleopatra Tangerine 
10 Ipigua – IAC Sunki Tangerine 28 Ipigua – IAC ‘Caipira’ Orange 
11 IAC Sunki Tangerine 29 IAC ‘Caipira’ Orange 
12 Bianchi Sunki Tangerine 30 Bianchi ‘Caipira’ Orange 
13 IAC 2000 Sunki Tangerine 31 IAC 2000 ‘Caipira’ Orange 
14 Olímpia Sunki Tangerine 32 Olímpia ‘Caipira’ Orange 
15 EEL Sunki Tangerine 33 EEL ‘Caipira’ Orange 
16 59 Sunki Tangerine 34 59 ‘Caipira’ Orange 
17 58 Sunki Tangerine 35 58 ‘Caipira’ Orange 
18 Arapongas Sunki Tangerine 36 Arapongas ‘Caipira’ Orange 
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where 0<α<1, , φ>0, and f(.; μ, φ) is the density 
function in Equation (1) (Ferrari and Cribari-
Neto, 2004). If α>0, the probability mass 
distribution at Beta point y = c is exceeded, i.e., 
the probability of observing y = 0 or y = 1 is 
α=P(y=c). Note that the first term of the 
distribution shown in Equation (3) depends on 
(α), and the second term depends on (μ, φ) 
because it involves the continuous part of the 
response variable (Ospina & Ferrari, 2010). 

The expected mean and the variance of Y 
following the inflated Beta distribution are given 
by: E[Y]=αc+(1-α)μ and (1 )Var[Y] (1 )

1
μ − μ= − α

+ φ
, 

respectively. Thus, ˆ ˆ ˆ ˆE[Y] c (1 )= α + − α μ  estimates 

the response of the inflated Beta model. The 
distribution shown in Equation (3) for Y in the 
interval [0, 1) is nominated an inflated Beta 
distribution at point zero (BIZ), and denoted by  
=Y  BIZ(α, μ, φ). In this analysis, the case will 
be discussed based on the observed values in the 
range [0, 1) (0 ≤ y < 1). 

On account that Y1, ..., Yn are independent 
random variables, in which Y1, i=1, ..., n, follows 
the distribution at the inflated Beta c point (c = 0 or 
c = 1) as in Equation (2), i.e., Yt  BI{c}(αt, μt, φ), the 
inflated Beta regression model (RBIc) is defined by 
the systematic components: 

 
M
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in which  Zt1, ..., ZtM and Xt1, ..., Xtm are 
observations from known regression variables 
with M+m<n. For discrete components of the 
inverse probit link function αt=Φ{ζt}, and for the 
continuous model, the inverse of the log link 
function is μt=exp{ηt}. We note that μt is the 
conditional average of yt to y∈(0, 1) and φ is the 
dispersion parameter that can be variable or 
constant for all of the observations. 

In the model RBIc, the estimate of the 
parameters vector θ=(γT, βT, φ)T

 can be calculated 
using the maximum likelihood method whose 
function is given by: 
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However, as these estimators do not have a 

closed form, they may be obtained by maximizing 
the log-likelihood function using a nonlinear 
optimization algorithm, such as a Newton algorithm 
or a quasi-Newton algorithm (Ferrari & Cribari-
Neto, 2004). We used the package gamlss 
(Generalized Additive Models for Location, Scale 
and Shape) from the statistical program R to obtain 
point estimates for the parameters of the RBIZ 
model. 

Various measures of “goodness of fit” can be 
evaluated, and the model of fit assessment can be 
based on the estimated values for the maximum 
likelihood from the sample. One of these goodness 
of fit values is the pseudo R2 of McFadden (1973), 
given by: 

 

2 θ

0

l
ρ =1-

l
, 

where lθ is the log-likelihood function of the fitted 
model and l0 is a function of the log-likelihood of 
the null model, or the model without the regression 
structure. Based on Louviere, Hensher, and Swait 
(2000), the model has the best goodness of fit when 
the value of ρ2 ranges from 0.2 to 0.4. Domencich 
and McFadden (1975) ran simulations to compare 
the range of ρ2 with multiple correlation coefficients 
of the range (R) and found that the range of ρ2 (0.2 
to 0.4) is equivalent to an R range of 0.7 to 0.9. 

Based on Ospina and Ferrari (2012), the residual 
analysis of a regression model inflated with zeros 
should be divided into two parts: the first evaluates 
residuals of discrete components (rD

pt) and the 
continuous (rC

pt) model. These authors propose that 
the residuals be Pearson standardized based on Fisher's 
iterative algorithm scores to estimate the parameters. 
Second, the authors defined a random quantile residual 
as the global residual of the model using the 
information from the two components. To verify the 
assumptions about the residuals as well as the presence 
of atypical observations of the discrete component of 
the inflated Beta regression model, Ospina and Ferrari 
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(2012) suggested a standardized version of the Pearson 
residual. For the continuous component, they followed 
Espinheira, Ferrari, and Cribari-Neto (2008) to set a 
weighted version of the common residual of Fisher's 
iterative algorithm score used to estimate the parameter 
β when φ is fixed. A more detailed discussion can be 
found in Ospina and Ferrari (2012). 

Results and discussion 

Initially, an exploratory analysis of canker incidence 
was performed for each genotype and rootstock. All 
zeros were removed from the data set. Based on these 
data, the genotype Arapongas developed the highest 
incidence of citrus canker (Figure 1). Considering 
rootstock effects, the ‘Caipira’ orange (Figure 2) 
rootstock appeared to support the lowest incidence of 
citrus canker in the scion (regardless of scion genotype). 

 

 
Figure 1. Box-plot of the incidence of citrus canker on leaves of 
different genotypes of sweet orange Pera (Citrus sinensis). 

 

Figure 2. Box-plot of the incidence of citrus canker on leaves of 
scions of sweet orange Pera (Citrus sinensis) on four different 
rootstocks. 

However, the distribution of the variable 
incidence is asymmetric – there is a high proportion 
of zeros in these data, Figure 3. Approximately 
85.28% of these data are zeros, which justifies the 
use of the zero-inflated model. 

In Figure 3, the incidence of citrus canker can be 
described by an inflated Beta distribution. 
Therefore, an RBIZ model was used and adjusted 
with Yi  BIZ(α, μ, φ) as Equation (2), including the 
covariates rootstock and genotype in the model as 
follows: 

 
Figure 3. Frequency of incidence of citrus canker on leaves of the 
sweet orange variety Pera (Citrus sinensis). 
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(4)

 
and 
 

( ) 0 1 2 3 4
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9 10

11

2000
58 59

Log  Bianchi EEL IAC   IAC

                Ipigua IAC  G  G   Olímpia

                 Limão Cravo   Tangerina Cleópatra

                 Tangerina Sun

= + × + × + × + ×
+ × − + × + × + ×
+ × + ×
+ ×

μ β β β β β
β β β β
β β
β ki.

(5)

 
These equations represent sub-models and are 

the discrete and continuous components, 
respectively, in the model described by Equation 
(2). To fit these models, we used the gamlss 
module in R, which iteratively maximizes the log-
likelihood function using the RS algorithm, 
which is a generalization of the algorithm used by 
Rigby and Stasinopoulos (2005). The estimates of 
the RBIZ model and their standard errors are 
presented in Table 2. We calculated the pseudo R2 
of McFadden (1973) to assess the suitability of the 
model, applying the likelihood ratio test. The 
value of the estimated pseudo R2 is 2ˆ 0.385ρ = , 
indicating that the model goodness of fit was 
appropriate. The likelihood ratio (LR) test 
provided evidence to reject the null hypothesis 
(H0:(γ0=...=γ11=0); (β0=...=β11=0)), at the usual 
level of significance of 5%, with the test statistic 
and LR = 51.003; p-value = 0.0024. Therefore, at 
least one of the parameters in the model was 
significant. 
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However, some parameters in the two sub-
models were not significant, (Table 2). Therefore, 
we used the Akaike information criterion (AIC) to 
select the most appropriate reduced model (using 
stepGAIC in module gamlss in R).  

The AIC value for the reduced model was 124.7. 
The McFadden pseudo R2 for this model was 
estimated at 2ˆ 0.271ρ = , indicating a good fit. The 

test of the likelihood ratios (LR) indicated that there 
was no evidence to reject the null hypothesis 
(H0:(γ1=...=γ8=0); (β9=β10=β11=0)), i.e., these 
parameters were not significant in the model (at the 
5% level), with the statistical test LR = 15.1 and p-
value = 0.3. 

The observed estimates and their standard 
errors for the reduced model are presented in 
Table 3. For the sub-model Probit(α) (4), the 
estimates of the discrete component regression 
parameters were significant for the variable 
rootstock. The estimates for the sub-model Log(μ) 
(5), the continuous component of the model, and 
the parameters were significant for all genotypes 
of the sweet orange variety Pera. 

Based on the Probit(α), sub-model (6), the 
rootstock ‘Caipira’ orange induced the most 
resistance in the scion to citrus canker. ‘Caipira’ 
orange was followed by Cleopatra tangerine, Sunki 
tangerine and rangpur lime in increasing incidence 
of canker on the scion.  

The Log( μ ), sub-model (7), indicated that the 

genotype Arapongas had the lowest incidence of 
citrus canker, followed by genotypes IAC and G58. 

The genotypes EEL and Bianchi were more 
susceptible to citrus canker. 

Table 3. Estimates and standard errors of the regression using 
the zero-inflated Beta model. 

 γ̂  Estimate SE p-value 

Intercept 1.7013 0.2315 0.0000 
Limão Cravo  -1.0442 0.2721 0.0001 
Tang. Cleópatra -0.5905 0.2851 0.0391 
Tang. Sunki -0.6884 0.2814 0.0149 

β̂  Estimate SE p-value 

Intercept -1.7350 0.1670 0.0000 
Bianchi -0.6137 0.2671 0.0222 
EEL -0.4831 0.2718 0.0763 
IAC -1.2617 0.5030 0.0126 
IAC2000 -0.9423 0.2682 0.0005 
Ipigua-IAC -1.1169 0.4031 0.0059 
G58 -1.1377 0.3323 0.0007 
G59 -0.8093 0.2434 0.0010 
Olímpia -1.0802 0.2684 0.0001 

 φ̂  3.4360 0.1986 0.0000 

Note: SE - Standard Error. 

The reduced model has the following sub-
models: 

 
1.7013 1.0442 0.590

0.68
(

8
)

4
- Limão Cravo - 5Tangerina Cleópatra -

                      Tangerina

Pro

 

bit

Sunki,

=α  
(6)

 
and 
 

1.7350 0.6137 0.4831 1.2617 0.9423
1.1169 1.1377 0.8093 1.08 2 .

)
0

( -  -  - EEL -  -  -

     

Log Bianchi IAC IAC2

                     -  -  - 

000

Ipigua-IAC G58 G59 Olímpia

=μ
(7)

 
Measures of model fit, Figure 4, show that (a) 

the residuals were randomly scattered around zero, 
(b) the points were in the range from -3 to 3, and (c) 
and (d) the residual distribution function 
approximated the normal. 

 
 

Table 2. Estimates and standard errors of the zero-inflated Beta regression model to predict the incidence of citrus canker on sweet 
orange leaves. 

γ̂  Estimate SE p-value   β̂  Estimate SE p-value 

Intercept 1.8974 0.3583 0.0000   Intercept -1.8892 0.3518 0.0000 
Bianchi -0.1841 0.3653 0.6146   Bianchi -0.5312 0.2781 0.0570 
EEL -0.0147 0.3794 0.9692   EEL -0.4288 0.2728 0.1170 
IAC 0.4663 0.4350 0.2845   IAC -1.1147 0.5225 0.0336 
IAC2000 -0.3787 0.3555 0.2875   IAC2000 -0.8456 0.2741 0.0022 
Ipigua-IAC 0.2716 0.4072 0.5053   Ipigua-IAC -0.9805 0.4024 0.0153 
G58 -0.0107 0.3799 0.9775   G58 -1.0994 0.3272 0.0009 
G59 -0.5576 0.3491 0.1112   G59 -0.7041 0.2511 0.0053 
Olímpia -0.4349 0.3553 0.2219   Olímpia -1.0704 0.2691 0.0001 
Limão Cravo  -1.1102 0.2852 0.0001   Limão Cravo  0.2123 0.3181 0.5050 
Tang. Cleópatra -0.6418 0.2974 0.0316   Tang. Cleóp 0.0313 0.3405 0.9268 
Tang. Sunki -0.7515 0.2934 0.0109   Tang. Sunki -0.0818 0.3304 0.8046 

φ̂  3.4870 0.1985 0.0000          

Note: SE - Standard Error.  
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Figure 4. Measures of model fit. (a) fitted values versus quantile 
residuals; (b) index versus quantile residuals; (c) histogram of 
residual frequency; (d) quantile-plot. 

To check the outliers of the RBIZ model, we 
reviewed the residuals (rD

pt) and (rC
pt). For the 

discrete component (Probit(α)), observations 291, 
305, 332 and 340 exceeded the range of -3 to 3 
and are outliers (Figure 5 (a) and (b)); (Figure 5 
(c) and (d)) represent the continuous component. 
These observations are the same as the outliers in 
the box-plot, Figures 1 and 2. In Figure 5 (c) and 
(d), the points are in the range from -3 to 3.  

With the exclusion of observations 291, 305, 332, 
and 340, the estimates do not differ from those that 
include all of the observations. Therefore, they 
should not be excluded from the analysis. 

 

 

 

 
Figure 5. Model fit in relation to outliers. (a) and (b) represent 
the discrete component; (c) and (d) represent the continuous 
component. 

Conclusion 

In this study the ‘Caipira’ orange rootstock 
resulted in the greatest resistance of the scion to 
citrus canker. Using one of the evaluations we 
obtained similar results to those reported by 
Gonçalves-Zuliani et al. (2015). Furthermore, it 
was possible to detect the genotypes that were 
most vulnerable to citrus canker and those 
rootstocks that imparted greater resistance using a 
smaller number of plants, with the modeling 
assumptions providing more reliable results. 
Thus, the zero-inflated Beta regression model is 
the most appropriate for modeling data with an 
excessive proportion of zeros. Besides that, this 
model saved time and resources. 
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