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Abstract: Aim: The study of the patterns and mechanisms of temporal coherence of 
ecological variables among lakes has become an important area of limnology. However, no 
study to date has experimentally tested whether and how resource subsidies and food web 
configuration affect the patterns and mechanisms of temporal coherence of limnological 
variables. We conducted a field mesocosm experiment to test the following hypotheses: 
(i) nutrient enrichment would reduce the temporal coherence of system variables; (ii) 
fish predation would enhance the temporal coherence of system variables; and (iii) the 
strength of temporal coherence decreases from physical (water transparency), to chemical 
(dissolved oxygen concentration [DO]) to biological variables (total zooplankton 
biomass). Methods: For 11 weeks, we manipulated fish presence and nutrient (N and 
P) concentration in a 2 × 2 factorial design in sixteen within-lake enclosures installed 
in a tropical coastal lagoon. Coherence was estimated by pair-to-pair Pearson’s moment 
correlations of the temporal trajectories of each response variable among enclosures of 
the same treatment. Results: Fish presence only enhanced the temporal coherence of 
zooplankton biomass, whereas contrary to our expectations, nutrient addition enhanced 
the temporal coherence of [DO]. The strength of the individual effects of fish and nutrients 
on temporal coherence was affected by variable identity, but this variation did not occur 
in a consistent pattern across variables. However, the interactive effects of fish and 
nutrients on the temporal coherence of the three variables monitored were not statistically 
significant. Conclusions: Our results indicate that local factors, such as fish presence 
and nutrient availability, may affect the temporal coherence of several system variables, 
but these effects are better predicted by the strength of direct interactions between the 
local factor and the variable than by the identity of the variable itself. We conclude that 
eutrophication and overfishing may alter the coupling of spatial and temporal dynamics 
of some ecosystem variables.

Keywords: eutrophication, temporal synchrony, stability, shallow lakes, fish, predation.
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1. Introduction

“Temporal coherence” refers to the degree 
of synchronicity among temporal trajectories 
of ecological units within a predefined realm 
(Magnuson  et  al., 1990; George  et  al., 2000). 
The temporal coherence of ecological variables 
is determined by local and regional factors that 
may influence the local dynamics of variables 
in similar ways (Kent  et  al., 2007). In aquatic 
sciences, the number of studies investigating the 
temporal coherence of environmental variables 
(i.e., biotic and abiotic) has increased in both 
temperate (Baines et al., 2000; George et al., 2004; 
Folster et al., 2005; Vogt et al., 2011) and tropical 
regions (Lansac-Toha et al., 2008; Caliman et al., 
2010). The reason for this increased interest is 
associated with both fundamental and practical 
needs to consider lakes as dynamic ecological units 
that are connected and organized across a landscape, 
rather than spatially independent entities. From a 
more fundamental ecological view, limnologists are 
increasingly interested in knowing to what degree 
the dynamic properties of aquatic ecosystems are 
determined by large-scale regional factors or by 
local environmental factors (Lopes  et  al., 2011). 
From a more practical perspective, it will be 

important to know, under a global climate change 
scenario, whether and how the long-term behavior 
patterns of lakes will show common responses to 
environmental change across large geographic areas 
(Arnott  et  al., 2003). High temporal coherence 
would also be a fundamental premise justifying the 
extrapolation of results obtained in individual lakes 
to larger regions; this could considerably decrease 
the costs associated with monitoring a larger 
number of lakes (Stoddard et al., 1998). In addition, 
understanding patterns of temporal coherence and 
their mechanisms is important because it allows, in 
a regional context, decisions regarding management 
and environmental protection to be made based on 
functional aspects, rather than the structural ones 
usually employed.

Two general interrelated patterns have been 
observed in studies of the temporal coherence 
of lakes. The first is that temporally coherent 
patterns are strongest for physical variables, 
intermediate for chemical variables and weakest 
for biological variables (Livingstone and Dokulil, 
2001; Kratz  et  al., 2003; Caliman  et  al., 2010). 
The second is the relatively weaker importance 
of individual local factors to determine temporal 

Resumo: Objetivos: Estudos sobre os padrões e mecanismos de coerência temporal 
de variáveis ecológicas entre lagos têm se tornado um tema importante na limnologia. 
Até o momento, nenhum estudo testou se e como a oferta de recursos e a configuração 
da teia trófica afetam os padrões e mecanismos da coerência temporal de variáveis 
limnológicas. Nós conduzimos um experimento de mesocosmos em campo durante 11 
semanas para testar as seguintes hipóteses: (i) a adição de nutrientes reduz a coerência 
temporal de variáveis ecossistêmicas; (ii) a predação por peixes potencializa a coerência 
temporal de variáveis ecossistêmicas e (iii) a coerência temporal é mais forte para variáveis 
físicas (transparência da água), intermediária para variáveis químicas (concentração de 
oxigênio dissolvido [OD]) e fraca para variáveis biológicas (biomassa zooplanctônica total). 
Métodos: Nós manipulamos a presença de peixe e a adição de nutrientes inorgânicos 
(N e P) em um desenho fatorial 2 × 2 em dezesseis mesocosmos instalados em uma 
lagoa costeira tropical. A coerência foi estimada por correlações de Pearson par-a-par 
das trajetórias temporais de cada variável resposta entre os mesocosmos de um mesmo 
tratamento. Resultados: A presença de peixes aumentou significativamente apenas a 
coerência temporal da biomassa zooplanctônica, e, contrário às nossas expectativas, a 
adição de nutrientes aumentou a coerência temporal da [OD]. A intensidade dos efeitos 
da presença de peixe e da adição de nutrientes sobre a coerência temporal foi afetada pela 
identidade da variável monitorada, mas não em um padrão consistente. No entanto, a 
interação da presença de peixe e adição de nutrientes não afetaram a coerência temporal 
de nenhuma variável monitorada. Conclusões: Nossos resultados indicam que a predação 
de peixes e a disponibilidade de recursos podem afetar significativamente padrões de 
coerência temporal, mas tais efeitos dependerão mais de efeitos diretos do fator local sobre 
a variável do que da identidade da própria variável. Concluímos que a eutrofização e a 
sobrepesca podem interferir no acoplamento da dinâmica espaço-temporal de algumas 
variáveis limnológicas.

Palavras-chave: eutrofização, sincronismo temporal, estabilidade, lagos rasos, peixes, 
predação.
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for the conservation and/or restoration of lakes in 
a landscape context.

Inland aquatic ecosystems have been heavily 
impacted by cultural eutrophication and the trophic 
downgrading of their food webs originating from 
overfishing or the extirpation of top predators 
(Smith and Schindler, 2009; Estes  et  al., 2011). 
These impacts may be even worse in tropical 
coastal lagoons because of their distribution amidst 
densely populated areas and the absence of stringent 
environmental laws in most tropical countries, which 
makes these ecosystems particularly susceptible to 
the influence of human activities (Esteves  et  al., 
2008). Eutrophication and the extinction of 
predators, alone or in combination, may severely 
alter the structure of aquatic food-webs, with 
important repercussions for the temporal dynamics 
and stability of populations, communities and 
ecosystem-level processes (Carpenter et al., 1985; 
Worm  et  al., 2002). Nutrient enrichment may 
alter the growth rates of organisms and destabilize 
interspecific interactions, generally leading to 
chaotic oscillatory behavior in populations and 
food web properties (Deangelis  et  al., 1989; 
Persson et al., 2001). On the other hand, predators 
are credited with dampening explosive growth or 
dominance in prey populations (Morin and Lawler, 
1995), which may synchronize prey population 
variability (Ims and Andreassen, 2000). Therefore, 
local factors, such as nutrient enrichment and 
predation by fish, may have contrasting effects on 
the temporal coherence of aquatic communities and 
on the processes and environmental conditions that 
directly or indirectly rely on them.

In this study, we present the results of a 
field experiment carried out in a tropical coastal 
lagoon that was designed to test the individual 
and interactive effects of local factors (nutrient 
enrichment and fish predation) on the temporal 
coherence of physical (water transparency), 
chemical (dissolved oxygen concentration [DO]) 
and biological (total zooplankton biomass) 
variables. The experiment lasted for 11 weeks 
and was conducted in sixteen in situ enclosures, 
which provide real-life setting while maintaining 
experimental controllability. In this study, we aimed 
to test the hypothesis that the strength of temporal 
coherence decreases from physical, to chemical 
to biological variables (Caliman et al., 2010). We 
also predicted that (i) nutrient enrichment would 
reduce the temporal coherence of system variables; 
and (ii) fish predation would enhance the temporal 
coherence of system variables.

coherent patterns among lakes (Folster et al., 2005; 
Vogt  et  al., 2011), but see (Kling  et  al., 2000). 
The discrepancy of temporally coherent patterns 
among physical, chemical and biological variables 
has been attributed to differences in the number 
of processes that can affect such variables as well 
as to the sensitivity of these variables to broad-
scale regional factors and/or more localized in-lake 
factors (Kratz et al., 2003). For example, physical 
variables such as water temperature are strongly 
affected by regional climate, which contributes 
to stronger coherent patterns among lakes across 
larger scales (Baines  et  al., 2000; Caliman  et  al., 
2010). Water chemistry has also been shown to 
be temporally coherent for a myriad of variables 
(Folster et al., 2005), although to a lesser extent than 
physical properties because dissolved ions and other 
substances are also greatly affected by several local 
factors such as lake size and morphometry. Finally, 
biological variables are determined by an amalgam 
of controlling abiotic and biotic mechanisms, which 
make these variables more prone to be affected by 
multiple local factors (Baines et al., 2000) and subject 
to intrinsic species properties such as population 
growth rates and self-regulation (Hastings 1993). 
Local and intrinsic species properties, in turn, may 
interact in complex ways and exhibit asynchronous 
qualitative and quantitative variation across lakes. 
This complex interplay can affect the temporal 
trajectories of ecological variables in different 
directions, dampening the effects of local factors 
on temporal coherence (Kratz and Frost, 2000, and 
references therein).

However, the ecological knowledge that supports 
the aforementioned generalization comes from 
observational studies, which, although these studies 
were important to demonstrate the generality of 
temporally coherent patterns among lakes, they 
have weak power to rigorously test the strength and 
directions of the potential individual and interactive 
effects that local factors have on the temporal 
coherence of various limnological variables. 
Furthermore, spatial auto-correlation of local factors 
and larger-scale regional factors make it difficult 
to understand the relative importance of local and 
regional factors on temporal coherence. Finally, 
in a more applied context, individual local factors 
may represent the only suitable  environmental 
factors that can be effectively managed. Therefore, 
understanding the consequences as well as the 
potentialities that individual representative local 
factors have on the patterns of temporal coherence 
among lakes may provide important knowledge 
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chlorophyll-a (Chl-a) was 30 µg L–1, and the mean 
Secchi disk depth was 0.6 m.

2.2. Enclosures and experimental design

The experiment was conducted over an eleven-
week period using sixteen cylindrical, transparent 
polyethylene (thickness 0.6 mm) enclosures that 
were 2.0 m in diameter and 2.4 m tall (Figure 1B, 
C). The enclosures were equipped with iron rings 
at the top and bottom for structural stability and to 
attach floaters (top) and sediment anchors (bottom). 
All enclosures were open at the bottom to allow 
fish access to benthic food. However, to prevent 
fish from escaping without separating the sediment 
from the water column, nylon netting with a 1-cm 

2. Methods

2.1. Experimental site

This study was conducted in Cabiúnas Lagoon, 
located at Restinga de Jurubatiba National Park, Rio 
de Janeiro, Brazil (22° 15’ S, 41° 40’ W) (Figure 1A). 
Cabiúnas is a distrophic freshwater coastal lagoon 
with a surface area of 0.35 km2 and a mean depth of 
2.0 m. The water is humic (13 mg C L–1 of dissolved 
organic carbon, DOC) and slightly acidic (pH 6.3) 
and has an average annual temperature of 23.6 °C 
(Caliman et al., 2010). During the study period, the 
mean total phosphorus and nitrogen concentrations 
of the water were 1.5 µM and 20 µM, respectively. 
The mean phytoplankton biomass estimated by 

Figure 1. (a) Geographic location of Cabiúnas Lagoon in the Rio de Janeiro State, Brazil highlighting the experi-
mental site (arrow). (b) The experimental site was near to the littoral region of the lagoon, but no macrophytes were 
included in enclosures. (c) Sixteen enclosures were installed adjacently to one another and experimental treatments 
were assigned in a block design.
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by daily enclosure inspections. The few fish that died 
were immediately replaced to maintain a constant 
fish density throughout the experiment.

2.4. Sampling and analysis

Sampling started 1 week (hereafter 1st week) 
after the establishment of experimental treatments 
(to guarantee that aquatic communities inside the 
enclosures had some time to begin responding to 
fish and nutrient additions), and enclosures were 
resampled after 2, 3, 4, 5, 6, 7 and 11 weeks, 
resulting in 77 days of experimental duration. Water 
transparency of each enclosure was estimated with 
a Secchi disk which gives a reliable and integrative 
measures of variation in water color and turbidity 
(Padial and Thomaz, 2008). Depth-integrated 
water samples were collected weekly from each 
enclosure by integrating individual water samples 
collected at depths of 10, 70, and 140 cm from 
the water surface with a van Dorn bottle. We 
used integrated water samples for assessment of 
DIN and DIP concentrations in each enclosure. 
The nitrate concentration was measured by flow 
injection analysis (FIA) after persulfate oxidation 
and nitrate reduction in a cadmium column with 
post-nitrite determination (APHA, 1989). The 
ammonium concentration was measured according 
to Solorzano (1969). Soluble reactive phosphorus 
was measured using the ammonium-molybdate 
method according to Golterman  et  al. (1978). 
The [DO] was measured at depths of 10, 70, and 
140 cm from the water surface at noon with an 
oxymeter (YSI 85). Depth-integrated [DO] was 
obtained by averaging [DO] from the three depths. 
Zooplankton was sampled by vertical hauls of 1.6 
m with a net with a 65-µm mesh size. Zooplankters 
were counted either in a Sedgewick-Rafter chamber 
under a microscope (rotifers, nauplii, cladocerans 
and meroplanktonic larvae) or in open chambers 
under a stereomicroscope (copepodites and adult 
copepods). Zooplankton biomass was estimated 
by weighing 20 individuals of each species (Mettler 
UMT2 microbalance), except for rotifers, whose 
biomass was obtained as average values from 
Ruttner-Kolisko (1977). The total zooplankton 
biomass was obtained by multiplying mean 
zooplankter weights by respective species density 
in the sample.

2.5. Statistical analysis

To verify the efficacy of the experimental 
nutrient addition, we used two-factor (fish and 
nutrient) repeated measures analysis of variance 

mesh size was placed at the bottom of each enclosure 
and the bottom ring was pushed 0.1 m into the 
sediment. All enclosures were placed at a mean 
depth of ~2 m, so that the top ring of the enclosures 
reached 0.3 m above the water surface, protecting 
the enclosures against lagoon water ingression due 
to wave action. At this depth, the enclosed water 
volume was ~6,300 L.

The experimental design was a 2 × 2 orthogonal 
factorial combination of nutrients and fish (+/– 
nutrients and +/– fish). The treatments were 
“Control” (no fish or nutrient addition), “F” (only 
fish addition), “N” (only nutrient addition), and 
“N+F” (both fish and nutrient addition) and were 
replicated four times in a block design (1 treatment 
per block) (Figure  1C). This design allowed all 
experimental treatments and controls to be equally 
exposed to regional effects (i.e., climate, lagoon 
water temperature variation, sediment influence). 
Therefore, differences among treatments and the 
control could be safely attributed to the treatment 
effects.

2.3. Experimental setup

Experimental treatments were established 
one week after the enclosures were installed. This 
period allowed limnological conditions to stabilize 
after perturbations associated with installation. In 
the treatments with nutrient addition, the final 
concentrations of dissolved inorganic nitrogen 
(DIN - NH4+NO3) and phosphorus (DIP - PO4) 
were kept constant throughout the experiment at 50 
µM N (adjusted weekly with NH4NO3) and 10 µM 
P (adjusted weekly with KH2PO4 and K2HPO4), 
thereby maintaining a final N:P ratio of 5:1. Fish 
presence was manipulated by introducing 40 adult 
individuals of Hyphessobrycon bifasciatus Ellis 1911 
(Characidae) into the enclosures, achieving a final 
density of 13 individuals m–2, which is similar to 
that found in the littoral region of the Cabiúnas 
lagoon. Fish were caught near the experimental 
location with a net and were conditioned for 1 day 
in a fish tank-net inside the lagoon to allow for 
recovery from the stress associated with capture. 
Only active and healthy individuals were used in 
the experiment. Individual fish varied in size from 
3 to 3.5 cm, and mass ranged from 0.3 to 0.5 g 
individual–1. H. bifasciatus is an omnivorous fish 
that forages in both pelagic and benthic food webs 
and can feed on zooplankton, phytoplankton, 
periphyton and detritus (Guariento  et  al., 2010, 
2011; Fonte et al., 2011). Fish mortality was low 
throughout the experiment (< 10%), as determined 
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Pearson’s correlation coefficients of the control. 
These calculations, for a given treatment and 
variable, resulted in a distribution of 36 individual 
effect sizes. We then calculated the cumulative effect 
sizes from the average of this distribution and its 
bootstrapped 95% CI using 9,999 iterations. The 
log response ratio is the most widely used metric for 
calculating effect sizes and is intuitive for estimating 
the proportional difference between treatments 
(Hedges et al., 1999).

3. Results

The nutrient addition was successful at 
establishing significant differences among the 
treatments with regard to the concentrations of DIN 
and DIP during the eleven-week experiment (RM-
ANOVA; Table 1). The mean concentrations of DIN 
and DIP in the treatments that received the addition 
of nutrients (N and N+F) were 7.4× and 60× greater 
than the non-amended treatments (Control and F), 
respectively (Table 1). Furthermore, no significant 
effects of the experimental block were observed for 
the Secchi disk depth, [DO] and total zooplankton 
biomass (F3, 10  =  1.73, P  =  0.22; F3, 10  =  1.07, 
P = 0.40; F3, 10 = 0.30, P = 0.81, respectively). These 
results indicate that possible spatial heterogeneity 
among enclosures was not a confounding factor for 
the results of the experiment and that “regional” 
effects affected all experimental enclosures similarly.

Differences in the temporal coherence between 
nutrient and control treatments were only significant 
for [DO] (Figure  2B). This result shows that 
nutrient-enriched enclosures were most coherent 
for [DO], but no difference was observed for 
Secchi disk depth (Figure  2A) or zooplankton 
biomass (Figure  2C). Regarding the temporal 
coherence between the fish and control treatments, 
the zooplankton biomass variable was most 
coherent in enclosures where fish were introduced 
(Figure 2C). Neither the coherence of Secchi disk 
depth (Figure  2A) nor [DO] (Figure  2B) in the 
fish treatment was significantly different from that 
of the control. Coherence between the control and 
the F+N treatments was not different for any of 
the variables tested (Figure  2), although for the 

(RM-ANOVA followed by contrast analysis as a 
post-hoc test) to test for differences in DIN and 
DIP concentrations. We used Log10-transformed 
DIN and DIP data for all sampled weeks in the 
RM-ANOVAs. We also conducted RM-ANOVAs 
to test for the effects of experimental block (random 
factor) on Secchi disk depth, [DO] and total 
zooplankton biomass.

We first measured the temporal coherence 
of each variable by calculating the pair-to-pair 
Pearson’s moment correlation coefficients between 
the enclosures of a given treatment. Before we 
performed Pearson’s correlation, we tested for 
normality of each variable with Kolmogorov-
Smirnov’s test. The degree of temporal coherence 
was assumed to be the magnitude of the correlation 
coefficient (rpearson) (Baines et al., 2000; George et al., 
2000). For each treatment (Control, F, N and F+N), 
a total of 6 pair-to-pair correlations were possible 
for a given variable due to the 4 different enclosures 
for each treatment. To test for the individual 
and interactive effects of fish and nutrients on 
the temporal coherence of each system variable, 
we calculated the average Pearson’s correlation 
coefficients and the 95% confidence intervals (± 
95% CI) for each treatment. Confidence intervals 
were estimated by a bootstrapping technique with 
9,999 iterations. This randomization-based analysis 
circumvents the problem of dependence among 
the correlation coefficients calculated from all 
possible pair-to-pair enclosures’ time series within 
a given treatment (Caliman  et  al., 2012). The 
aforementioned statistical analyses were performed 
using the software STATISTICA version 8.0 for 
windows (StatSoft, 2007). A significance level of 
P = 0.05 was used for all analyses.

We calculated “temporal coherence effect sizes” 
to test whether the strength of the individual and 
interactive effects of fish and nutrient enrichment on 
the temporal coherence of each variable depended 
on the system variable identity. We computed the 
effect sizes with the log response ratio, defined as 
the natural logarithm (ln) of all of the individual 
Pearson’s correlation coefficients for each treatment 
(n = 6 for F, N or F+N) divided by all individual 

Table 1. Average concentrations of dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) in 
the water column of the experimental enclosures. The results are the mean (± SD) of weeks 2 through 11. Different 
letters above the mean values represent significant differences (RM-ANOVA with Contrast Analysis as a post-hoc 
test, P<0.05).

Control Fish Nutrient Fish+Nutrient
DIN (µM) 3.6a (4.1) 3.9a (1.2) 30.8b (3.5) 24.7b (5.5)
DIP (µM) 0.1a (0.1) 0.1a (0.1) 5.9b (0.8) 6.1b (1.5)
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variables was not statistically significant. However, 
the strength of the nutrient effect on the temporal 
coherence of zooplankton biomass was statistically 
weaker than for Secchi disk depth and [DO]. The 
strength of the fish effect on the temporal coherence 
of Secchi disk depth was significantly lower than 
[DO] and zooplankton biomass (Figure 3), but no 
significant difference was observed between [DO] 
and zooplankton biomass. Finally, the strength of 
the interactive F+N effect on temporal coherence 
did not vary significantly among the variables tested.

4. Discussion

To the best of our knowledge, this is the first 
experimental study to test general questions about 
temporal coherence in lakes. Contrary to most 
findings in the literature, which generally report 
medium to low coherence in temporal patterns 
among tropical lakes (Lansac-Toha  et  al., 2008; 
Caliman et al., 2010), we found a strong pattern 
of temporal coherence considering all variables and 
treatments together (grand mean of the correlation 
coefficient r ≈ 0.62). This finding can be explained by 
the physical proximity of the within-lake enclosures 

Secchi disk depth, the interactive effect increased 
the temporal coherence in comparison to the fish 
treatment (Figure 2A).

There were differences among the individual 
and interactive effects of nutrients and fish on 
the strength of the temporal coherence of all 
variables, but these differences showed no consistent 
pattern with regard to the identity of the variables 
(Figure 3). The strength of the nutrient effect on 
temporal coherence was higher for Secchi disk depth 
and [DO], but the difference between these two 

Figure 2. Individual and interactive effects of fish and 
nutrient addition on the temporal coherence of (a) Secchi 
disk depth (i.e., water transparency); (b) dissolved oxygen 
concentration; and (c) total zooplankton biomass. Data 
points are the averaged Pearson’s correlation coefficients 
(n = 6) calculated from all possible pair-to-pair correla-
tions among the enclosures (n = 4) of a given treatment. 
Error bars show the bootstrapped 95% CI estimated with 
9,999 iterations. Different letters indicate that treatments 
are significantly different from one another (i.e., their 
95% CIs do not overlap).

Figure 3. Strength of the individual and interactive effects 
of fish (F) and nutrient addition (N) on the temporal co-
herence of physical (Secchi disk depth), chemical ([DO]) 
and biological (total zooplankton biomass) variables. The 
strength of the treatment effects was estimated by effect 
size, calculated as the log (ln) response ratio between 
all Pearson’s correlations of treatments and the control. 
Positive and negative values indicate that treatments in-
crease or decrease, respectively, the temporal coherence of 
a given variable compared to the control. Error bars show 
bootstrapped 95% confidence intervals (constructed with 
9,999 iterations). The magnitude of the effects of a given 
treatment differs among variables if the 95% CIs of the 
effect sizes do not overlap. Symbols marked by different 
letters are significantly different from one another.
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regarding the temporal coherence of variables, 
with fish presence increasing and nutrient addition 
decreasing the temporal coherence of variables. 
Compared to control, fish presence enhanced 
the temporal coherence only for zooplankton 
biomass, and nutrient addition increased, instead 
of decreasing, the temporal coherence of [DO]. 
In addition, based on previous work, we expected 
that the magnitude of the individual effects of each 
factor would be strongest for physical, intermediate 
for chemical and weakest for biological variables, 
a pattern also not supported by our results. 
Taken together, these results raise doubt about 
the generalization that the effects of temporal 
coherence are stronger in physical variables than 
on chemical and biological variables. In fact, Secchi 
disk depth, the physical variable we monitored in 
our study, was the only variable with a temporal 
trajectory that was not affected by the individual 
effects of fish presence or nutrient addition. Two 
non-mutually exclusive hypotheses may explain the 
apparent divergence of our results and the patterns 
described in the literature. First, it has been argued 
that physical variables are more temporally coherent 
than chemical and biological variables because 
physical variables are more strongly affected by 
large-scale regional factors, whereas chemical and 
biological variables may also respond to several 
in-lake factors. As we noted previously, although 
our experiment was conducted under natural 
field conditions, the isolation of the water column 
certainly simplified the community- and ecosystem-
level processes occurring inside the experimental 
enclosures compared to the lagoon. This situation 
may have caused the environmental pathways 
and mechanisms that could affect the temporal 
trajectories of chemical and biological variables to 
be fewer and/or simpler inside the enclosures in 
comparison to the rest of the lagoon. Consequently, 
the functional discrepancies among physical, 
chemical and biological variables could be reduced.

Most of the generalizations in the literature 
consider water temperature as physical, dissolved 
ions as chemical and phytoplankton chlorophyll-a as 
biological variables. With respect to their functional 
attributes, these variables may differ substantially 
from the variables we monitored in our experiment, 
which may imply a weakness in classifying system 
variables into such large “functional” categories. 
We can easily detect such conceptual weaknesses 
if we consider the fact that light extinction in the 
water column, which can be roughly measured by 
the Secchi disk depth, may be affected by chemical 

and the relatively shorter experimental duration 
compared to those reported in observational studies, 
which guaranteed a high similarity of ecological 
conditions among enclosures of a given treatment. 
However, despite the high similarity in the 
“regional” ecological conditions among enclosures 
(i.e., regional climate, lagoon water temperature 
variation and sediment characteristics), we observed 
significant quantitative and qualitative variation in 
patterns of temporal coherence associated with our 
experimental manipulation. These results indicate 
that for some variables, the effects of the alterations 
to fish presence and nutrient enrichment were 
consistently strong enough not to be masked by the 
overall control of the “regional” factors.

Overall, we found no support for the general 
hypothesis that the strength of temporal coherence 
decreases from physical to chemical to biological 
variables. However, our results partially supported 
our predictions about the effects of fish presence 
and nutrient enrichment on the temporal coherence 
of the three measured variables. We observed that 
the strength of individual local factors on temporal 
coherence depended on the identity of the variable 
but not in a consistent pattern. The prediction that 
nutrient enrichment would decrease the temporal 
coherence of variables was not confirmed, and 
the presence of fish only increased the temporal 
coherence of zooplankton biomass. In addition, 
the interactive effects of both local factors had no 
significant effect on the temporal coherence of any 
variable, and the strength of the interactive effects 
between nutrient enrichment and fish presence was 
also unaffected by variable identity. This result may 
indicate that the generally weak control attributed 
to individual local factors can emerge from 
quantitatively antagonistic or “noisy” interactions 
among individual local factors that reciprocally 
mask their individual effects on temporal coherence, 
even when such individual effects exist (Kratz and 
Frost, 2000). This result is an important first step 
toward applying knowledge about the temporal 
coherence of system variables in the large-scale 
management of lakes (Stoddard  et  al., 1998). 
Because inland aquatic systems have been altered 
by the simultaneous effects of multiple stressors 
(Christensen  et  al., 2006; Bozelli  et  al., 2009), 
it may be difficult to understand and associate 
the changes in the temporal dynamics of lakes 
with any isolated human-mediated perturbation 
(Arnott et al., 2003; Woodward et al., 2010).

We predicted that the individual effects of fish 
presence and nutrient addition would be opposite 
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abundance on the patterns of temporal coherence 
in lakes.
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