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ABSTRACT
Recent studies have shown that two common methylenetetrahydrofolate reductase (MTHFR) gene 
polymorphisms (C677T and A1298C) might correlate with thyroid dysfunction, but the results 
remain inconsistent. We carried out a meta-analysis aiming to assess the relationship of both 
polymorphisms with thyroid dysfunction. The PubMed, EMBASE, CNKI (China National Knowledge 
Infrastructure), CBMdisc (China Biology Medicine disc), WeiPu and Wanfang databases were 
searched up to September 2021. Case-control and cohort studies on MTHFR polymorphism and 
thyroid dysfunction were identified. Eight studies from six publications were finally included in 
our meta-analysis, including 817 patients and 566 controls. After pooled analysis, we found that 
the MTHFR C677T polymorphism was associated with an increased risk of hypothyroidism (TT vs. 
CC+CT/recessive model: OR = 2.07, 95% CI: 1.02-4.20, P = 0.04; TT vs. CC/homozygote model: OR = 
2.35, 95% CI: 1.13-4.86, P = 0.02), while trial sequential analysis (TSA) revealed that it could be a false 
positive result. The MTHFR A1298C polymorphism was related to a decreased risk of hypothyroidism 
(C vs. A/allele model: OR = 0.63, 95% CI: 0.44-0.92, P = 0.02; CC vs. AC+AA/recessive model: OR = 
0.42, 95% CI: 0.22-0.79, P = 0.007; CC vs. AA/homozygote model: OR = 0.43, 95% CI: 0.25-0.85, P = 
0.02), which was conclusive according to TSA. The results of this meta-analysis suggest that MTHFR 
A1298C seems to be a protective factor for hypothyroidism, while the MTHFR C677T polymorphism 
may be a risk factor. However, more well-designed studies with larger sample sizes are needed 
to obtain more reliable results of the association between the MTHFR C677T polymorphism and 
hypothyroidism. Arch Endocrinol Metab. 2022;66(4):551-81
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INTRODUCTION

Thyroid dysfunction is a common endocrine 
disorder that always results from autoimmune 

thyroid diseases (AITDs), such as Hashimoto’s 
thyroiditis (HT) and Graves’ disease (GD). 
AITDs can affect people at any age, but women 
of reproductive age (30~50 years old) are more 
likely to suffer from these diseases (1,2). Thyroid 
dysfunction is associated with several adverse 
perinatal outcomes in the mother and fetus, 

including infertility, miscarriage, hypertensive 
disorders, premature delivery, and decreased IQ in 
the offspring (3,4). Recently, several clinical and 
epidemiological studies have shown a relationship 
between methylenetetrahydrofolate reductase 
(MTHFR) polymorphisms and thyroid dysfunction 
(5-7). One of the publications reported that two 
women diagnosed with Hashimoto’s thyroiditis 
suffered from infertility, and in both, MTHFR gene 
polymorphisms were identified (7).



Co
py

rig
ht

©
 A

E&
M

 a
ll r

ig
ht

s r
es

er
ve

d.

552

MTHFR and thyroid dysfunction

Arch Endocrinol Metab. 2022;66/4  

Methylenetetrahydrofolate reductase (MTHFR) is 
a key enzyme in folate metabolism that catalyzes the 
irreversible conversion of 5,10-methylenetetrahydrofolate 
to 5-methyltetrahydrofolate. MTHFR plays a crucial 
role in the regulation of DNA synthesis, the methylation 
cycle, and homocysteine concentrations in the blood (5).
The MTHFR gene has been mapped to chromosomal 
region 1p36.22 and consists of 12 exons, encoding the 
656-amino-acid protein. 

C677T (rs1801133) and A1298C (rs1801131) are 
the two most common single nucleotide polymorphisms 
(SNPs) in the MTHFR gene (8,9). A C to T substitution 
at the 677th nucleotide of the MTHFR gene converts 
an alanine to a valine and causes thermolability of 
MTHFR (8). The MTHFR A1298C polymorphism 
results in a glutamic acid-to-alanine substitution 
leading to lower MTHFR enzyme activity than wild-
type (10). A large body of literature has reported that 
genetic variation in this gene is associated with many 
diseases, such as neural tube defects, Alzheimer’s 
disease, vascular diseases and some kinds of cancer 
(11-17). Moreover, several studies have indicated that 
patients with hypothyroidism have elevated serum total 
homocysteine (18-26), which seemed to implicate the 
underlying correlation between the MTHFR gene 
polymorphism and hypothyroidism.

To date, several studies (5,6,27-32) have been 
carried out to explore the potential association 
between MTHFR gene polymorphisms and thyroid 
diseases (HT, GD, and subclinical/overt hyper- and 
hypothyroidism), but the results remain controversial. 
Here, we conducted a meta-analysis of all case-
control and cohort studies to shed some light on the 
association between the MTHFR C677T and A1298C 
polymorphisms and thyroid dysfunction.

MATERIALS AND METHODS
Search strategy

PubMed (1950-2021), EMBASE (1974-2021) and 
Chinese databases, including the China National 
Knowledge Infrastructure (CNKI), China Biology 
Medicine disc (CBMdisc), WeiPu and Wanfang 
databases, were searched up to September 2021. Two 
authors independently performed a comprehensive 
literature search for relevant studies using the following 
terms: (“Methylenetetrahydrofolate reductase” OR 
“MTHFR”) AND (“thyroid” OR “thyroid diseases” 

OR “thyroid dysfunction” OR “hyperthyroidism” OR 
“hypothyroidism” OR “autoimmune thyroid disease” 
OR “Graves’ disease” OR “Hashimoto’s thyroiditis”). 
All references cited in the included studies or relevant 
reviews were also hand searched to identify any 
additional articles.

Inclusion and exclusion criteria

Eligible studies included in the meta-analysis met 
the following inclusion criteria: (1) estimated the 
association between the MTHFR C677T and/or 
A1298C polymorphism and thyroid dysfunction 
(subclinical or overt hypo- and/or hyperthyroidism) 
or autoimmune thyroid diseases (Graves’ disease and/
or Hashimoto’s thyroiditis); (2) were case-control or 
cohort studies; and (3) provided enough information 
on the frequency of genotypes in cases and controls. The 
exclusion criteria were as follows: (1) review articles, 
animal studies, simple commentaries, case reports, or 
unpublished reports and (2) reports containing no 
usable data.

Quality evaluation and data extraction

The quality of the included studies was evaluated 
according to the Newcastle-Ottawa Scale (NOS), 
and only studies with a quality score of 6 or better 
were included for further analyses. Two authors 
independently extracted data from all eligible studies. 
Disagreement was settled by discussions. For each of 
the included studies, the following data were collected: 
the first author’s last name, publication year, country, 
ethnicity, thyroid function and sample size of cases and 
controls. Hardy-Weinberg equilibrium (HWE) in the 
controls was also performed as another reference to 
determine the quality of eligible studies.

Statistical analysis

The associations between the MTHFR C677T and/
or A1298C polymorphism and thyroid diseases were 
assessed by calculating the pooled odds ratios (ORs) 
and 95% confidence intervals (95% CIs). The statistical 
significance of the summary OR was determined with 
the Z-test. Five models, including the allele model 
(C677T: T vs. C; A1298C: C vs. A), dominant model 
(C677T: TT+TC vs. CC; A1298C: CC+AC vs. AA), 
recessive model (C677T: TT vs. TC+CC; A1298C: CC 
vs. AC+AA), homozygote model (C677T: TT vs. CC; 
A1298C: CC vs. AA) and heterozygote model (C677T: 
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TC vs. CC; A1298C: AC vs. AA), were compared. The 
heterogeneity across the studies was estimated by the chi-
square-based Q statistic test and the I2 test. The fixed-
effect model (using the Mantel-Haenszel method) was 
used if I2 ≤ 50%; otherwise, the random-effect model 
(using the DerSimonian-Laird method) was applied. 
Subgroup analyses were performed by ethnicity and 
thyroid function. The Revman 5.3 (Review Manager 
Version 5.3. Copenhagen: The Nordic Cochrane 
Centre, The Cochrane Collaboration, 2014) was used 
for all statistical analyses. Stata software (version 16.0; 
Stata Corp LP, College Station, TX, USA) was used 
to analyze publication bias and for sensitivity analysis. 
Publication bias was investigated with Begg’s funnel 
plot, and funnel plot asymmetry was further assessed 
by Egger’s linear regression test (33). The significance 
of the intercept was determined by the t-test, and 
a P-value less than 0.05 was considered statistically 
significant. Sensitivity analysis was conducted by 
removing each individual study sequentially from the 
analysis to examine the effect of a single study on the 
collective results.

Trial sequential analysis

TSA 0.9.5.10 software (http://www.ctu.dk/tsa/) was 
used for trial sequential analysis to minimize the type-I 
error and random error (34). The required information 
size (RIS) was determined based on a 5% risk of type 
I error, an 80% power of the study, and a case-control 
event proportion calculated from meta-analysis by the 
weighted average. The O’Brien-Fleming boundary or 
futility boundary was constructed to determine whether 
the present meta-analysis was sufficiently powered and 
conclusive. If the Z-curve crosses the TSA boundaries 
or futility area, there is sufficient information to 
support the conclusions, and further trials are unlikely 
to change the findings. If the Z-curve does not cross 
any of the boundaries or reach the RIS, the evidence 
is insufficient to make a firm conclusion. TSA would 
be conducted in the allele model. Meta-analysis, which 
presented a significant result in the pooled analysis, was 
also tested under TSA.

RESULTS
Study selection

Relevant citations were retrieved and preliminarily 
screened. Seventy studies were identified after discarding 

duplicates, and fifty-eight were excluded because they 
were thematically irrelevant based on the title and 
abstract. Thus, the full text of thirteen studies was 
searched and assessed. One conference abstract (35) was 
excluded due to a lack of detailed information. A case 
report (7) and three (20,27,29) case-only studies were 
deleted. A case-control study was excluded because the 
data were unusable (36). Finally, a total of seven papers 
(5,6,28,30-32,37) were eligible for quality evaluation 
(Table S1), but one publication (28) was excluded for 
its low NOS scores. Therefore, six publications (5,6,30-
32,37) were eligible for data extraction, two (6,31) of 
which contained two separate studies. Therefore, eight 
studies from six publications were ultimately included 
in this meta-analysis (Figure 1).

In the present meta-analysis, eight studies met 
our criteria for MTHFR C677T polymorphism meta-
analysis, and seven studies were eligible for MTHFR 
A1298C polymorphism meta-analysis. All the 
included studies were divided into “hyperthyroidism”, 
“hypothyroidism” or “not applicable (NA)” groups 
according to the thyroid function of the cases. The 
distributions of the MTHFR C677T and A1298C 
genotypes and the HWE of the included studies are 
shown in Table 1.

Articles retrieved from databases after discarding duplicates: n=70

Articles assessed by full-text: n=13

Articles eligible for quality evaluation: n= 7

Articles included in meta-analysis: n=6

58 articles excluded for 
thematically irrelevant by 
title and abstract

6 Excluded:
1 lack of detail information 
1 case report
3 only-case studies
1 with unusable data

No additional articles after 
assessing references

1 Excluded for low 
NOS scores

Figure 1. Flow chart of the study selection process.
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Table 1. The characteristic of eligible studies in the meta-analysis

Studies Country Ethnicity Types Thyroid 
function

Cases Controls
PHWECC CT TT CC CT TT

(MTHFR C677T)

Mao et al., 2010 China Asian Graves’ disease hyperthyroidism 51 88 60 36 131 68 0.0371 

Arakawa et al., 2012 Japan Asian Hashimoto’s disease NA 45 63 11 36 35 13 0.3636 

Graves’ disease NA 54 79 27

Hashimoto’s disease and Graves’ disease 99 142 38

Lee et al. , 2016 Korea Asian Graves’ disease hyperthyroidism 35 55 32 35 53 12 0.2332 

Kvaratskhelia et al., 2017 Georgia Caucasian Subclinical hypothyroidism hypothyroidism 8 6 5 14 4 1 0.3638 

Abu-Hassan et al., 2019 Jordan Caucasian Hypothyroidism hypothyroidism 49 32 17 55 32 12 0.0432 

Hyperthyroidism hyperthyroidism 51 10 5

Hypothyroidism and Hyperthyroidism 100 42 22

Kvaratskhelia et al., 2020 Georgia Caucasian hypothyroidism hypothyroidism 16 15 3 25 4 0 0.6900 

Total 817 566

(MTHFR A1298C) AA AC CC AA AC CC

Mao et al., 2010 China Asian Graves’ disease hyperthyroidism 139 41 6 178 55 2 0.3115 

Arakawa et al., 2012 Japan Asian Hashimoto’s disease NA 75 36 3 37 26 1 0.1314 

Graves’ disease NA 95 60 2

Hashimoto’s disease and Graves’ disease 170 96 5

Lee et al., 2016 Korea Asian Graves’ disease hyperthyroidism 88 34 0 72 26 2 0.8445 

Abu-Hassan et al., 2019 Jordan Caucasian Hypothyroidism hypothyroidism 45 37 16 37 29 32 0.0001 

Hyperthyroidism hyperthyroidism 6 46 14

Hypothyroidism and Hyperthyroidism 51 83 30

Kvaratskhelia et al., 2020 Georgia Caucasian hypothyroidism hypothyroidism 26 6 2 22 4 3 0.0054 

Total  777 526

NA: not applicable; PHWE: p value of Hardy-Weinberg equilibrium.

Meta-analysis of the C677T polymorphism

As shown in Table 2, the pooled data of six publications 
indicated no association between the MTHFR C677T 
polymorphism and thyroid diseases in any of the five 
comparison models. However, subgroup analyses 
stratified by thyroid function showed a significant 
association of the MTHFR C677T polymorphism with 
hypothyroidism (TT vs. CC+CT/recessive model: OR 
= 2.07, 95% CI: 1.02-4.20, P = 0.04; TT vs. CC/
homozygote model: OR = 2.35, 95% CI: 1.13-4.86, 
P = 0.02) (Figure 2B and Supplemental Figures). 
No relationship was found between the MTHFR 
C677T polymorphism and hyperthyroidism, even 
when reanalyzed by ethnicity (Table 2, Figure 2A and 
Supplemental Figures).

Meta-analysis of the A1298C polymorphism

In the analysis of the MTHFR A1298C polymorphism, 
only the recessive model comparison of a total of five 

publications reached a significant difference (CC vs. 
AC+AA/recessive model: OR = 0.62, 95% CI: 0.38-0.99, 
P = 0.05). Subgroup analysis stratified by ethnicity showed 
a significant difference in Caucasians (CC vs. AC+AA/
recessive model: OR = 0.47, 95% CI: 0.27-0.81 P = 
0.007; AC vs. AA/heterozygote model: OR = 1.92, 95% 
CI: 1.11-3.32, P = 0.02) (Figure 3A and Supplemental 
Figures). There was a significant association of MTHFR 
A1298C with hypothyroidism in subgroup analyses 
stratified by thyroid function (C vs. A/allele model: OR 
= 0.63, 95% CI: 0.44-0.92, P = 0.02; CC vs. AC+AA/
recessive model: OR = 0.42, 95% CI: 0.22-0.79, P = 
0.007; CC vs. AA/homozygote model: OR = 0.43, 95% 
CI: 0.25-0.85, P = 0.02) (Figure 3B and Supplemental 
Figures), but no relationship was found between MTHFR 
A1298C and hyperthyroidism (Table 3).

Publication bias and sensitivity analysis

Begg’s funnel plot and Egger’s test were performed 
to evaluate the publication bias of the literature. As 
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Table 2. Meta-analysis of the association between MTHFR C677T polymorphism and thyroid disorders

Diseases Comparison 
models

Studies/
publications I2 Model OR (95% CI) P

Thyroid disorders Overall

T vs. C 8/6 77% Random 1.36 (0.92, 2.01) 0.12 

TT+CT vs. CC 8/6 79% Random 1.34 (0.76, 2.39) 0.31

TT vs. CC+CT 8/6 44% Fixed 1.29 (0.97, 1.71) 0.08

TT vs. CC 8/6 64% Random 1.40 (0.72, 2.71) 0.32 

CT vs. CC 8/6 76% Random 1.17 (0.65, 2.08) 0.60 

Asians

T vs. C 4/3 70% Random 1.10 (0.78, 1.57) 0.59

TT+CT vs. CC 4/3 79% Random 0.98 (0.51, 1.85) 0.94

TT vs. CC+CT 4/3 65% Random 1.29 (0.72, 2.31) 0.39

TT vs. CC 4/3 76% Random 1.16 (0.51, 2.65) 0.73

CT vs. CC 4/3 79% Random 0.89 (0.45, 1.78) 0.75 

Caucasians

T vs. C 4/3 86% Random 2.54 (0.67, 9.59) 0.17 

TT+CT vs. CC 4/3 85% Random 2.54 (0.56,11.48) 0.22 

TT vs. CC+CT 4/3 36% Fixed 1.58 (0.81, 3.10) 0.18 

TT vs. CC 4/3 60% Random 3.09 (0.53, 18.16) 0.21

CT vs. CC 4/3 80% Random 2.03 (0.49, 8.41) 0.33 

Hyperthyroidism Overall

T vs. C 3/3 85% Random 0.86 (0.48, 1.53) 0.60 

TT+CT vs. CC 3/3 79% Random 0.65 (0.31, 1.33) 0.24 

TT vs. CC+CT 3/3 68% Random 1.25 (0.60, 2.59) 0.55 

TT vs. CC 3/3 80% Random 0.93 (0.33, 2.62) 0.88 

CT vs. CC 3/3 66% Random 0.57 (0.30, 1.06) 0.07 

Asians

T vs. C 2/2 85% Random 1.11 (0.61, 2.00) 0.73 

TT+CT vs. CC 2/2 84% Random 0.83 (0.33, 2.07) 0.69

TT vs. CC+CT 2/2 78% Random 1.58 (0.66, 3.80) 0.31

TT vs. CC 2/2 88% Random 1.25 (0.30, 5.19) 0.76

CT vs. CC 2/2 74% Random 0.69 (0.32, 1.48) 0.34

Hypothyroidism Overall (all Caucasians)

T vs. C 3/3 77% Random 2.80 (0.99, 7.96) 0.05*

TT+CT vs. CC 3/3 73% Random 2.88 (0.91, 9.14) 0.07

TT vs. CC+CT 3/3 5% Fixed 2.07 (1.02, 4.20) 0.04*

TT vs. CC 3/3 35% Fixed 2.35 (1.13, 4.86) 0.02*

CT vs. CC 3/3 65% Random 2.30 (0.78, 6.77) 0.13 

OR: odds ratio; CI: confidence interval.
*Indicates a significant difference at P ≤ 0.05.

shown in Figure 4, the shape of the funnel plots was 
symmetrical in the comparison of the allele model (T vs. 
C). Then, Egger’s test was adopted to provide statistical 
evidence of the funnel plot symmetry. The results still 

showed no publication bias (P = 0.152). The results of 
sensitivity analysis demonstrated no significant effect of 
an individual study on the overall pooled OR, indicating 
the reliability of the results (Supplemental Figures).
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Table 3. Meta-analysis of the association between MTHFR A1298C polymorphism and thyroid disorders

Diseases Comparison 
models

Studies/
publications I2 Model OR (95% CI) P

Thyroid disorders Overall

C vs. A 7/5 0% Fixed 0.94 (0.76, 1.16) 0.56 

CC+AC vs. AA 7/5 0% Fixed 0.92 (0.71, 1.18) 0.52 

CC vs. AC+AA 7/5 43% Fixed 0.62 (0.38, 0.99) 0.05*

CC vs. AA 7/5 22% Fixed 0.82 (0.49, 1.39) 0.46 

AC vs. AA 7/5 33% Fixed 1.11 (0.85, 1.45) 0.44 

Asians

C vs. A 4/3 0% Fixed 1.00 (0.77, 1.30) 0.99

CC+AC vs. AA 4/3 0% Fixed 0.96 (0.71, 1.30) 0.81

CC vs. AC+AA 4/3 42% Fixed 1.49 (0.52, 4.21) 0.46

CC vs. AA 4/3 42% Fixed 1.46 (0.51, 4.16) 0.48

AC vs. AA 4/3 0% Fixed 0.94 (0.69, 1.27) 0.67

Caucasians

C vs. A 3/2 0% Fixed 0.85 (0.61, 1.19) 0.35

CC+AC vs. AA 3/2 0% Fixed 0.82 (0.51, 1.31) 0.41

CC vs. AC+AA 3/2 0% Fixed 0.47 (0.27, 0.81) 0.007*

CC vs. AA 3/2 0% Fixed 0.67 (0.36, 1.23) 0.20

AC vs. AA 3/2 0% Fixed 1.92 (1.11, 3.32) 0.02*

Hyperthyroidism Overall

C vs. A 3/3 0% Fixed 1.17 (0.91, 1.52) 0.23 

CC+AC vs. AA 3/3 84% Random 1.69 (0.69, 4.15) 0.25 

CC vs. AC+AA 3/3 64% Random 0.87 (0.18, 4.09) 0.86 

CC vs. AA 3/3 41% Fixed 2.14 (0.97, 4.71) 0.06 

AC vs. AA 3/3 89% Random 1.98 (0.64, 6.17) 0.24 

Asians

C vs. A 2/2 0% Fixed 1.06 (0.77, 1.46) 0.70 

CC+AC vs. AA 2/2 0% Fixed 1.03 (0.72, 1.47) 0.86 

CC vs. AC+AA 2/2 70% Random 1.03 (0.05, 23.15) 0.98

CC vs. AA 2/2 69% Random 1.04 (0.05, 22.59) 0.98

AC vs. AA 2/2 0% Fixed 1.00 (0.69, 1.44) 0.98 

Hypothyroidism Overall (all Caucasians)

C vs. A 2/2 0% Fixed 0.63 (0.44, 0.92) 0.02*

CC+AC vs. AA 2/2 0% Fixed 0.76 (0.45, 1.26) 0.29 

CC vs. AC+AA 2/2 0% Fixed 0.42 (0.22, 0.79) 0.007*

CC vs. AA 2/2 0% Fixed 0.43 (0.22, 0.85) 0.02*

AC vs. AA 2/2 0% Fixed 1.09 (0.60, 1.96) 0.78 

OR: odds ratio; CI: confidence interval.
*Indicates a significant difference at P ≤ 0.05.

Trial sequential analysis results

For the MTHFR C677T polymorphism and 
susceptibility to thyroid disorders, the cumulative 
Z-curve neither crossed the trial sequential monitoring 
boundary nor reached the RIS (Figure 5A, 5B 
and Supplemental Figures); therefore, the result is 

inconclusive, and large-scale studies are warranted. 
For the MTHFR A1298C polymorphism and 
hypothyroidism susceptibility, the final Z-value crossed 
the conventional threshold and the O’Brien-Fleming 
boundary (Figure 5C); therefore, the meta-analysis 
result was conclusive. 
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Figure 2. Association between the MTHFR C677T polymorphism and hypothyroidism risk (allele model: T vs. C). A Total analysis and subgroup analyses 
stratified by ethnicity; B Subgroup analyses stratified by thyroid function.

A

B

DISCUSSION

The meta-analysis of eight studies showed that there 
was no association between the MTHFR C677T 
polymorphism and thyroid disorders, neither in the 
total pooled analysis nor in subgroup analyses stratified 
by ethnicity. However, subgroup analyses by thyroid 
function indicated that the C677T variant increased 
the risk of hypothyroidism, although more studies 

are needed to confirm this result. Previous studies 
observed that the plasma levels of total homocysteine 
(tHcy) increased in hypothyroidism (19,20); in 
addition, patients with thyroid diseases always had an 
associated increased vascular risk (38,39). According to 
the above results, we can easily associate the elevated 
tHcy concentrations with the underlying MTHFR 
C677T polymorphism. However, it is difficult to 
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Figure 3. Association between the MTHFR A1298C polymorphism and hypothyroidism risk (allele model: C vs. A). A Total analysis and subgroup analyses 
stratified by ethnicity; B Subgroup analyses stratified by thyroid function.

A

B

2
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s.e. of: IogOR

1

0

0 .2 .4 .6

-1

Figure 4. Begg’s funnel plot for the odds ratio of the MTHFR C677T allele frequency comparison (T vs. C) in thyroid dysfunction.
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explain why the plasma levels of tHcy were normalized 
after thyroid hormone replacement therapy (19,20). 
In the past few decades, a large body of studies have 
been conducted worldwide to elucidate the molecular 
mechanism of the association between MTHFR gene 
polymorphisms and other diseases. Ueland and cols. 
summarized that the relationship between the MTHFR 
C677T polymorphism and disease involves two aspects. 
First, the disease might influence tHcy concentrations, 
and effect modification might occur from the MTHFR 
polymorphism. Second, the genotype might be 
associated with disease risk due to the altered metabolism 
of folates (40). Moreover, Hustad and cols. supported 
that thyroid status affects the phenotypic expression 
of the MTHFR C677T polymorphism, possibly by 
modifying the availability of flavin cofactors (27). We 
know that the C to T mutation results in thermolability 
of MTHFR, which leads to a higher dissociation rate 
of flavin adenine dinucleotide (FAD), the cofactor of 
MTHFR. Thyroid hormones (free thyroxine and free 
triiodothyronine) increase the activity of enzymes 
involved in riboflavin metabolism, particularly riboflavin 
kinase (RK), and thereby augment the synthesis of 
FAD (27). Therefore, thyroid hormones, riboflavin, 
folate and MTHFR gene polymorphisms all play a 
role in homocysteine metabolism, but each of them 
provides a small contribution. This can also explain 
why not all MTHFR SNP C677T carriers demonstrate 
hyperhomocysteinemia, unless in conditions with low 
concentrations of thyroid hormones, riboflavin or 
folate (21,41-43). 

With regard to the MTHFR A1298C polymorphism, 
subgroup analyses by thyroid function indicated that 
the MTHFR A1298C polymorphism decreased the risk 
of hypothyroidism. The results were in accordance with 
the studies of Abu-Hassan and cols. and Kvaratskhelia 
and cols. Some studies (5,6,44) also found that 
the MTHFR A1298C polymorphism is in linkage 
disequilibrium (LD) with the C677T polymorphism, 
and Abu-Hassan and cols. suggested that the interaction 
of the SNPs within haplotypes might act as a major 
determinant of disease susceptibility in comparison with 
the single polymorphisms in the MTHFR gene among 
hypothyroidism cases. They believed that carriers of the 
CC (677C-1298C) and TA (677T-1298A) haplotypes 
had significantly lower risks of hypothyroidism, whereas 
those with TC (677T-1298C) haplotypes had a higher 
likelihood of having hypothyroidism (6). Lee and cols. 
reported that the MTHFR 677CT/1298AA genotype 

decreased the risk of ophthalmopathy in patients with 
GD, but the MTHFR 677T/1298A haplotype increased 
the risk of GD without ophthalmopathy. Therefore, 
more studies examining the relationship of the C677T 
and A1298C haplotypes with thyroid dysfunction are 
required. Besides, previous studies reported that the 
MTHFR C677T and A1298C polymorphisms had 
different and even opposite effect on cell metabolism 
and DNA methylation (45,46). These results suggested 
that different polymorphisms might have different 
influences on thyroid function because of diverse 
pathogenesis, except for reduced enzyme activity. 
However, more basic researches are needed to explore 
the underlying molecular mechanism. 

Other than the two most common MTHFR gene 
polymorphisms, Mao and cols. also investigated the 
relationship between GD and another MTHFR SNP-
G1793A (rs2274976) — another mutation occurs 
at position 1,793 and results in alteration of the 
translation of an arginine to a glutamine. They observed 
that individuals with the variant genotypes (GA+AA) 
appeared to have a slightly higher risk of GD, but it 
was not statistically significant (30). Compared with 
the two common SNPs, the frequencies of the G1793A 
variant genotypes were very low in both the cases and 
the controls. In this context, many more participants 
are needed to reveal the potential relationship.

There are a few limitations in our meta-analysis. 
First, the numbers of included studies for our meta-
analysis were relatively small, especially in the subgroup 
analyses. Second, our results were based on unadjusted 
estimates, and some other covariants, including age, 
sex, environmental factors, and other lifestyle factors, 
were not controlled in our analysis. Moreover, several 
included studies were inconsistent with HWE in the 
controls. The studies of Abu-Hassan and cols. in 2019 
and Kvaratskhelia and cols. in 2020 included females 
only, which would result in nonconformity with HWE. 
Mao and cols. stated that conformity to HWE among 
each population was performed in their article, but 
the present data suggested a departure from HWE of 
the MTHFR C677T SNP. Hence, more high-quality 
studies on the association between MTHFR gene 
polymorphisms and thyroid disease are needed, and 
meta-analysis for each individual thyroid disease (HT, 
GD, hyperthyroidism, and hypothyroidism) is necessary 
to elucidate the true relationship with MTHFR gene 
polymorphisms.
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In conclusion, the present meta-analysis suggests 
that the C677T variant of the MTHFR gene increases 
the risk of hypothyroidism, while the MTHFR A1298C 
variation may protect patients against hypothyroidism. 
However, further well-designed, large-sample-size 
studies are warranted to confirm the association 
between the MTHFR C677T polymorphism and 
hypothyroidism.
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Supplemental figures

The association between the MTHFR C677T polymorphism and the risk of thyroid diseases
1. Allele model: T vs. C
1.1 Forest plots
(1) Total analysis and subgroup analyses stratified by ethnicity see Figure 2A
(2) Subgroup analyses stratified by thyroid function see Figure 2B
1.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-SCH 2017

Kvaratskhelia-hypo 2020

0.84 0.92 1.36 2.02 2.57

1.3 Figure of trial sequential analysis
(1) Total analysis (A) and subgroup analyses stratified by ethnicity (B Assians and C Caucassians)
A Total analysis see Figure 5A
B Assians

RIS is a Two-sided graph
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C Caucassians

RIS is a Two-sided graph
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(2) Subgroup analyses stratified by thyroid function (A hyperthyroidism and B hypothyroidism)
A Hyperthyroidism
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B Hypothyroidism see Figure 5B
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2. Dominant model: TT+TC vs. CC
2.1 Forest plots 
(1) Total analysis and subgroup analyses stratified by ethnicity

(2) Subgroup analyses stratified by thyroid function
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2.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Kvaratskhelia-SCH 2017

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-hypo 2020

0.64 0.76 1.34 2.39 3.31

3. Recessive model: TT vs. TC+CC
3.1 Forest plots
(1) Total analysis (A) and subgroup analyses stratified by ethnicity (B Asians and C Caucasians)
A Total analysis

B Asians
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C Caucasians

(2) Subgroup analyses stratified by thyroid function (A Hyperthyroidism and B Hypothyroidism)
A Hyperthyroidism

B Hypothyroidism

3.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Kvaratskhelia-SCH 2017

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-hypo 2020

0.81 0.97 1.29 1.71 2.27
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3.3 Figure of trial sequential analysis (only hypothyroidism-subgroup analysis)

RIS is a Two-sided graph
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4. Homozygote model: TT vs. CC
4.1 Forest plots
(1) Total analysis and subgroup analyses stratified by ethnicity 
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(2) Subgroup analyses stratified by thyroid function (A and B)
A Hyperthyroidism

B Hypothyroidism

4.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Kvaratskhelia-SCH 2017

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-hypo 2020

0.58 0.72 1.40 2.71 3.97
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4.3 Figure of trial sequence analysis (only hypothyroidism-subgroup analysis)

RIS is a Two-sided graph
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5. Heterozygote model: TC vs. CC
5.1 Forest plots 
(1) Total analysis and subgroup analyses stratified by ethnicity
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(2) Subgroup analyses stratified by thyroid function

5.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Kvaratskhelia-SCH 2017

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-hypo 2020

0.56 0.65 1.17 2.08 2.83
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The association between the MTHFR A1298C polymorphism and the risk of thyroid diseases
1. Allele model: C vs. A
1.1 Forest plots
(1) Total analysis and subgroup analyses stratified by ethnicity see Figure 3A
(2) Subgroup analyses stratified by thyroid function see Figure 3B
1.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia–hypo 2020

0.68 0.940.76 1.16 1.27

1.3 Figure of trial sequential analysis
(1) Total analysis (A) and subgroup analyses stratified by ethnicity (B Assians and C Caucassians)
A Total analysis

RIS is a Two-sided graph
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B Assians

RIS is a Two-sided graph
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C Caucassians

RIS is a Two-sided graph
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(2) Subgroup analyses stratified by thyroid function (A hyperthyroidism and B hypothyroidism)
A Hyperthyroidism

RIS is a Two-sided graph
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B Hypothyroidism see Figure 5C
2. Dominant model: CC+CA vs. AA
2.1 Forest plots 
(1) Total analysis and subgroup analyses stratified by ethnicity

(2) Subgroup analyses stratified by thyroid function (A hyperthyroidism and B hypothyroidism)
A Hyperthyroidism

B Hypothyroidism
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2.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-hypo 2020

0.63 0.71 0.92 1.18 1.29

3. Recessive model: CC vs. CA+AA
3.1 Forest plots
(1) Total analysis and subgroup analyses stratified by ethnicity

(2) Subgroup analyses stratified by thyroid function (A hyperthyroidism and B hypothyroidism)
A Hyperthyroidism
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B Hypothyroidism

3.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-hypo 2020

0.28 0.38 0.62 0.99 2.84

3.3 Figure of trial sequence analysis (A Caucasians and B hypothyroidism-subgroup analysis)
A Caucasians

RIS is a Two-sided graph
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B Hypothyroidism

RIS is a Two-sided graph
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4. Homozygote model: CC vs. AA
4.1 Forest plots
(1) Total analysis and subgroup analyses stratified by ethnicity 

(2) Subgroup analyses stratified by thyroid function
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4.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-hypo 2020

0.36 0.49 0.82 1.39 2.85

4.3 Figure of trial sequence analysis (only hypothyroidism-subgroup analysis)

RIS is a Two-sided graph
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5. Heterozygote model: CA vs. AA
5.1 Forest plots 
(1) Total analysis and subgroup analyses stratified by ethnicity

(2) Subgroup analyses stratified by thyroid function (A hyperthyroidism and B hypothyroidism)
A Hyperthyroidism

B Hypothyroidism
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5.2 Figure of sensitivity analysis

Meta-analysis estimates, given named study is omitted
Lower CI limit Estimate Upper CI limit

Mao-GD 2010

Arakawa-GD+HT 2012

Lee-GD 2016

Abu-Hassan-hyper+hypo 2019

Kvaratskhelia-hypo 2020

0.70 0.85 1.11 1.661.45

5.3 Figure of trial sequence analysis (only Caucasians-subgroup analysis)

RIS is a Two-sided graph
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