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ABSTRACT
Tumor development is a multistep process whereby local mechanisms enable somatic mutations 
during preneoplastic stages. Once a tumor develops, it becomes a complex organ composed of 
multiple cell types. Interactions between malignant and non-transformed cells and tissues create a 
tumor microenvironment (TME) comprising epithelial cancer cells, cancer stem cells, non-tumorous 
cells, stromal cells, immune-inflammatory cells, blood and lymphatic vascular network, and 
extracellular matrix. We review reports and present a hypothesis that postulates the involvement 
of growth hormone (GH) in field cancerization. We discuss GH contribution to TME, promoting 
epithelial-to-mesenchymal transition, accumulation of unrepaired DNA damage, tumor vascularity, 
and resistance to therapy. Arch Endocrinol Metab. 2019;63(6):568-75
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INTRODUCTION

R esearch into neoplastic formation is largely focused 
on genetic mutations resulting in benign or 

malignant tumors. However, neoplastic transformation 
begins long before the cancer lesion is detected. Most 
mutations occur in the preneoplastic stage of cancer 
development (1) and local mechanisms allowing for 
these somatic mutations are poorly understood. Tumor-
independent processes may alter the local milieu and 
help create a microenvironment sufficiently receptive 
to develop precancerous and cancerous changes. This 
process, termed “field cancerization”, was introduced 
by Slaughter and cols. (2) in reference to replacement 
of normal epithelial cell populations with cancer-
primed populations, but later defined as “a somatic 
evolutionary process that produces cells that are closer 
to cancer” (3). With chronic inflammation, for example, 
colonic mucosa of patients with inflammatory bowel 
disease undergoes a “field change”, creating a favorable 
environment for genetic mutations before histological 
dysplasia is evident (4-6). 

Developed tumors are composed of multiple cell 
types that interact with one another. Interactions 
between malignant and non-transformed cells and 
tissues create a tumor microenvironment (TME) (7) 
comprising epithelial cancer cells, cancer stem cells, 
non-tumorous cells, stromal cells (including resident 

fibroblasts, cancer-associated fibroblasts, adipose cells, 
and pericytes), immune-inflammatory cells, blood 
and lymphatic vascular network, and extracellular 
matrix (ECM) (7-10). TME was consistently shown 
to play a role in evolution of malignancies, and tumor 
development is highly dependent on the specific TME. 
Rapid expansion of tumor cells triggers hypoxia, 
resulting in metabolic reprogramming of tumor cells; 
interplay between cancer and neighboring cells results 
in further alteration of TME cellular components, 
restructuring of ECM, and formation of disorganized 
vascularization systems. Cancer TME constituents 
adapt to environmental conditions, promoting overall 
tumor growth (9,11). 

Multiple factors shape the environment to enable 
field cancerization in normal tissue or for tumor cell 
evolution toward malignization in TME. Growth 
hormone (GH) is secreted from pituitary somatotrophs 
and can also be expressed in non-pituitary tissue. Many 
GH actions are mediated by the insulin-like growth 
factor (IGF)/IGF receptor (IGFR) pathway, although 
GH exerts IGF-independent effects in bone, muscle, 
liver, and colon tissues (12-14). GH may create a 
protumorigenic environment in normal epithelial cells, 
suppressing tumor suppressor proteins and promoting 
neoplastic transformation (15,16). In neoplastic 
tissue, local GH expression has been linked to several 



Co
py

rig
ht

©
 A

E&
M

 a
ll r

ig
ht

s r
es

er
ve

d.

569

GH in the tumor microenvironment

Arch Endocrinol Metab. 2019;63/6

malignancies and several excellent reviews describe 
endocrine and autocrine/paracrine tumor-promoting 
GH actions in cancer cells and tissues (17-20). In this 
brief review, we focus on mechanisms underlying pro-
oncogenic actions of GH as a field modifier in non-
transformed cells and as a tumor promoter in TME. 

GH AND FIELD CANCERIZATION

Field cancerization occurs in response to exogenous 
or endogenous insults, mutagen exposure, or age-
related mutations in non-transformed cells. Although 
changes such as increased growth rate and decreased 
death rate may occur, cells do not display dysplasia 
(3). With further genetic alterations, preneoplastic 
cells evade normal growth-control mechanisms and 
clonal selection ultimately leads to development 
of a malignant clone (1,21). We suggest a broader 
definition of field cancerization, which includes cells 
with “phenotypic alterations required for malignancy” 
(3), as well as the process and mechanisms by which 
these yet undetectable early changes occur.

DNA damage response (DDR) and DNA repair 
protect cells from chromosomal instability and 
ultimately cancer. DDR signaling pathways react 
to endogenous or exogenous DNA damage and 
coordinate complex DNA repair processes (10). Thus, 
DDR genes are considered “caretakers” of the genome, 
as most oncogenic alterations are caused by inadequate 
DNA repair (22) and acquisition of oncogenic 
mutations with sustained proliferation. DNA damage 
also accumulates with age due to attenuated DNA 
repair mechanisms (23). 

Initiation of DDR starts upon recruitment of 
the MRE11/RAD50/NSB1 protein complex to 
the site of DNA damage, which, in turn, activates 
phosphoinositide-3-kinase-related kinases: ataxia-
telengiectasia mutated (ATM), ATM and Rad3 related 
(ATR), and DNA-dependent protein kinase (DNA-
PK) (24,25). These kinases phosphorylate and activate 
proteins essential for DNA repair, including H2AX, 
BRCA1, BRCA2, and TERT (26-28). ATM and 
ATR also phosphorylate checkpoint kinases Chk2 and 
Chk1, arresting cell proliferation, as well as the tumor 
suppressor p53 facilitating DNA repair, apoptosis, or 
cell cycle arrest (29,30).

In non-pituitary cells, GH expression is very low, but 
can be significantly induced and secreted in response 
to DNA damage pathway activation (31). In non-

tumorous human colon and mammary cells, murine 
colon tissue, and 3-dimensional human intestinal 
organoids derived from induced pluripotent stem cells, 
GH attenuates DDR, decreasing ATM kinase activity 
as well as Chk2 and p53 phosphorylation, which 
subsequently reduces DNA repair by both homologous 
recombination (HR) and non homologous end joining 
(NHEJ), resulting in accumulated unrepaired DNA 
(16). Non-tumorous human colon cells exposed to 
GH generate more colonies in soft agar, an indication 
of cell transformation, and mice bearing xenografts 
secreting GH develop more metastases (16). Peripheral 
blood lymphocytes of acromegaly patients harboring 
GH-secreting pituitary adenomas also exhibit increased 
chromosomal aberrations (32,33), and unrepaired 
DNA damage accumulates in the liver in a zebrafish 
model of acromegaly. Thus, in normal cells and tissues, 
elevated GH, whether secreted or induced locally, 
suppresses DNA repair, enabling an environment 
favorable for accumulation of oncogenic mutations and 
chromosomal instability. 

If DNA damage repair is not optimal, cells continue 
to proliferate, usually acquiring oncogenic mutations, 
undergo apoptosis, or exit the cell cycle and become 
senescent, thereby limiting propagation of damaged 
cells (34). Senescent cells remain metabolically 
active, secreting cytokines, chemokines, matrix 
metalloproteinases (MMPs), IGF1, IGF8, IGF binding 
proteins, and other factors as part of the senescence-
associated secretory phenotype (SASP) (35,36). 
Senescent cells also increase with age-associated 
attenuation of DNA damage repair (37-39). Secretion 
of SASP may persist, affecting neighboring cells (40-
42). We showed that GH is also a component of SASP 
(31), and GH secretion from senescent cells alters DDR 
activity in surrounding tissues, favoring DNA damage 
accumulation as evidenced by increased levels of DNA 
damage observed in senescent cells (43). 

Another possible role for GH in field cancerization 
lies in its ability to suppress tumor suppressor proteins. 
GH results in decreased expression of p53, PTEN, 
and APC in human non-tumorous colon cells and 
3-dimensional human intestinal organoids, while 
suppressing GH signaling with the GH receptor 
(GHR) antagonist pegvisomant led to p53 induction 
in colon tissue of acromegaly patients (15). Similarly, 
crossbreeding of Apc+/- mice, which all develop multiple 
intestinal and colon tumors by 9 months of age, with 
Ghr-/- mice markedly decreased the number and size 
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of tumors due to elevated colon and intestinal p53 
expression in the double mutant Apc+/-Ghr-/- mice (15). 
GH-induced decreased PTEN may trigger mTOR 
activity (44), stimulating cell proliferation and survival, 
while p53 deficiency may also enhance proliferation, 
exacerbating GH effects on DNA damage accumulation. 

In summary, excess GH secreted from somatotroph 
pituitary adenomas or GH induced locally in response 
to DNA damage, senescence, or inflammation (15) 
may alter the local microenvironment, providing a 
favorable milieu for non-transformed cells to acquire 
pro-proliferative mutations. 

GH ACTIONS AS A PART OF TME

GH and Epithelial-Mesenchymal Transition (EMT) in TME

EMT, a developmental regulatory program triggered in 
cancer cells that results in epithelial cell transformation, 
enables cells to acquire the ability to invade, resist 
apoptosis, and proliferate (10,45). Pleiotropically 
acting transcription factors including Snail, Slug, Twist, 
and Zeb1/2 orchestrate EMT, suppressing expression 
of E cadherin, which is involved in cell-to-cell adhesion, 
and inducing the mesenchymal marker N cadherin, 
thereby promoting motility and invasiveness (10,46). 
Secreted MMPs, a multigene family of zinc-dependent 
ECM remodeling endopeptidases, are also implicated 
in the multistep processes of invasion and metastasis, 
with ECM degradation, migration, and angiogenesis 
promoting tumor progression (47). 

The role of GH in EMT was analyzed in depth 
in a recent review (20). Here, we briefly recount 
studies on the effects of GH on EMT in several cancer 
models. GH transcription and protein expression was 
documented in human breast cancer and endometrial 
tissue (19,48,49) and in hepatocellular carcinoma (50), 
while GHR is expressed in several human cancers (51). 
Enhanced expression of GH releasing hormone and its 
receptor was found in cancer cell lines and in human 
malignant tissue (52,53). In human hepatocarcinoma 
cells, elevated GH promotes cell migration and invasion 
by inhibiting transcription of Claudin1, a tight junction 
component (54). In human breast cancer MCF7 cells, 
autocrine/paracrine GH promotes MMP2 and MMP9 
metalloprotease release and an EMT phenotype (55). 
Forced expression of GH induces TFF3, which in 
turn, enhances anchorage-independent growth, a 
marker of cell transformation (56). In these cells, 

GH overexpression was not associated with induced 
IGF-1 (57), suggesting a direct effect of GH in EMT. 
Further, both GH and WNT4 are upregulated in 
human mammary carcinoma and tumor xenografts 
expressing GH. Autocrine GH stimulates WNT4 
expression in breast cancer cells, which, in turn, 
increases mesenchymal markers vimentin, MMP2, and 
MMP7, while inducing cell migration and suppressing 
apoptosis (58). Finally, the microRNA 96-182 cluster, 
which promotes EMT and invasion by directly 
suppressing breast cancer metastatic suppressor 1-like 
gene expression via STAT3 and STAT5 signaling, is 
enhanced in human metastatic breast cancer (59), and 
microarray profiling in breast cancer cells shows that 
autocrine GH induces this microRNA cluster.

GH and GHR are abundantly expressed in human 
melanoma cells, and treatment with GH resulted in 
decreased E cadherin and increased N cadherin, while 
GHR knockdown reversed the effect (60). Conversely, 
silencing GH signaling in human pancreatic ductal 
adenocarcinoma cell lines resulted in increased E 
cadherin, while EMT markers including N cadherin, 
Zeb, Snail, and Slug were suppressed (61).

Nuclear localization of GHR and increased GHR 
levels have been reported in breast and colorectal 
carcinoma (62,63). In Ba/F3 murine lymphocyte cells, 
nuclear GHR localization was associated with oncogenic 
transformation and tumor metastasis due to enhanced 
nuclear translocation of phosphoSTAT5 generated 
at the cell surface by autocrine GH (64). In human 
colorectal cancer tissue, GH expression was associated 
with metastases, and forced GH expression with 
increased transcription of fibronectin 1, a mesenchymal 
marker, as well as decreased expression of E cadherin, 
followed by increased migration and invasion (65). 
GH was not induced in human colon adenocarcinoma 
tissue, but GHR was significantly upregulated in cancer 
cells compared to normal adjacent colon tissue (15). 
Nevertheless, in human HCT116 colon adenocarcinoma 
cell as well as in non-tumorous colon cells, GH treatment 
promoted induction of EMT transcription factors Snail 
and Twist2, respectively, while decreasing E cadherin, 
cell migration, and invasion. Importantly, co-culturing 
human colon adenocarcinoma HCT116 cells with GH-
expressing human colon fibroblasts resulted in increased 
HCT116 cell migration and soft agar colony formation 
(15). Thus, elevated GH, a paracrine component of 
TME, may initiate or exacerbate EMT, enhancing 
metastatic potential.
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GH and DNA damage in TME

Multiple mutations in malignant tumor DNA repair 
pathways are associated with DNA damage (66). GH 
induced in human breast carcinoma MDA-MB-436S 
and T47D cells as well as endometrial carcinoma 
RL95-2 cells increases clonogenicity and attenuates 
radiation-induced or mitomycin-induced DNA damage 
by activating DNA damage repair genes BRCA1, 
BRCA2, and TERT, promoting tumor cell survival. 
Accordingly, malignant cell GH induction in response 
to DNA damage may contribute to TME, resulting in 
tumor chemotherapy or radiation resistance (67,68). 

By contrast, suppressing GH signaling attenuates 
DNA repair, allowing DNA damage to accumulate. 
These cells are more prone to apoptosis and thus 
more sensitive to DNA damaging therapy (67,68). 
Accordingly, GH induction in response to DNA 
damage may contribute to TME, resulting in tumor 
chemotherapy or radiation resistance.

GH and tumor vascularization in TME

Tumor vascularization is an important part of TME, 
and angiogenesis promotes tumor progression, 
invasion, and metastasis (69). Recent studies suggest 
that tumor cells secrete soluble factors that attract 
blood vessels to increase blood supply and enhance 
metastasis (70). In benign and malignant vascular 
tumors, including angiosarcoma, Kaposi’s sarcoma, 
hemangioendothelioma, and hemangioma, GHR is 
significantly upregulated in both cytoplasm and nuclei, 
implying that tumor cells are targets for GH action. 
Indeed, GH exhibits mitogenic effects in vascular tissue 
cells, including smooth muscle cells, fibroblasts, and 
endothelial cells (71). In human mammary carcinoma 
MCF7 cells, GH promoted VEGF-A expression via 
an autocrine/paracrine effect and subsequent in vitro 
tube formation in human microvascular endothelial cell 
line; in vivo, in a xenograft model of human mammary 
carcinoma, autocrine/paracrine GH increased tumor 
blood and lymphatic microvessel density (72). Although 
GH may act independently in TME, it has been shown 
in colorectal carcinoma to upregulate VEGF expression 
via IGF-1 induction (73,74).

GH and immune cells in TME

Tumor cells secrete chemokines and cytokines into the 
microenvironment to recruit and activate immune cells. 
In turn, activated immune cells form a cancer-related 

inflammatory microenvironment promoting tumor 
progression (75). Macrophages comprise the majority 
of immune cells in this microenvironment (8). GH 
was shown to stimulate macrophage motility in several 
in vitro models (76) and serves as a chemoattractant 
for human monocytes (77) and T cells. Indeed, GH-
secreting pituitary adenomas contain significantly more 
CD4+ and CD8+ T cells than do non-GH adenomas 
(78). Thus, GH, induced in tumor cells via a paracrine 
effect, may contribute to inflammatory aspects.

Crosstalk between cells in the neoplastic 
microenvironment may support cancer cell capability for 
invasive growth (79). In light of the evidence presented 
above, it is reasonable to conclude that GH expressed 
and secreted from tumor, stroma, or inflammatory 
cells likely plays a substantial role promoting EMT and 
transforming TME.

GH, TME, AND RESISTANCE TO THERAPY

The goal of chemo- and radiation antitumor therapy 
is to cause cell death. However, TME may modulate 
responses to cytotoxic therapy, and GH, as a part of 
TME, may contribute to this process. GH effects on 
therapy resistance to cancer has been well described (80). 
Here, we elaborate on additional aspects of GH actions 
contributing to its effects on treatment resistance. 

DNA damaging agents trigger DNA damage in 
tumor cells and also in neighboring non-tumorous 
epithelial or stromal cells, which likely results in GH 
upregulation. In non-tumorous epithelial cells, GH, 
acting in a paracrine/autocrine fashion, may suppress 
DNA damage repair, leading to DNA damage 
accumulation with potential oncogenic transformation. 
In fibroblasts, DNA damaging agents can trigger 
senescence, accompanied by SASP induction (81). 
GH, as a component of SASP, can attenuate effects of 
chemo- or radiotherapy by decreasing p53-dependent 
apoptosis in tumor cells (15). In MDA-MB-231 and 
MCF7 human mammary carcinoma cells, GH induced 
chemoresistance to doxorubicin by suppressing 
apoptosis, and these effects were reversed by the GHR 
antagonist pegvisomant (82,83). 

GH may also impact chemotherapy resistance via 
its effects on multi-drug efflux pumps, which transport 
xenobiotics out of the cytoplasm (80). For example, 
GH expression in four different human melanoma cell 
lines upregulated expression of multiple ABC-family 
multi-drug efflux pumps, rendering cells resistant to 
chemotherapy (84). 
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CONCLUDING REMARKS

GH, either directly or by induction of IGF-1, 
promotes developmental growth, cell proliferation, 
differentiation, and survival (85-88). With age, 
activity of the somatotroph axis declines, which, from 
an evolutionary perspective, may be protective to 
safeguard the organism from potentially harmful effects 
of GH on age-related waning effectiveness of DNA 
repair pathways. Evidence presented here illustrate the 
emerging understanding of mechanisms implicating 
GH in promoting an environment favorable for 
neoplastic growth as well as in enabling proliferation 
and survival of existing tumor cells (Figure 1). 

The proposed role for GH in field cancerization may 
explain the increased propensity of acromegaly patients 
to develop colon, skin, thyroid, and prostate tumors 
(89,90), as well as the appearance of changes consistent 
with hepatocellular carcinoma (91-93) and mammary 
adenocarcinoma (94) in transgenic animal models of 
GH excess. Furthermore, patients with inherited GH 
signaling deficiency (Laron syndrome) do not develop 

cancer (95), and GH- or GHR-deficient animal models 
live longer and are resistant to age-related or chemically 
induced tumors (12,96). 

Microenvironmental factors, including GH, 
attenuate the efficacy of anticancer therapy. Effects 
of GH in TME have mostly been demonstrated in 
vitro, requiring further studies to confirm the role 
of GH in TME in vivo. Such studies will open new 
avenues for controlling the rate and direction of tumor 
cell evolution, and the potential for therapeutically 
targeting GH to improve anticancer therapy. 
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Figure 1. GH effects in non-tumorous tissue and TME. GH can be secreted by somatotroph pituitary adenoma cells, induced locally in non-tumorous 
tissue in response to DNA damage or inflammation, or secreted by senescent cells. By suppressing tumor suppressor proteins and altering DNA damage 
repair, GH promotes “field cancerization” in non-transformed cells, creating a pro-tumorigenic environment. Within the tumor, GH can be upregulated after 
DNA damaging therapy or in senescent cells, and, via autocrine/paracrine action, triggers tumor cell EMT, attracts immune cells, and promotes tumor 
vascularization, enabling survival, proliferation, and malignization of existing tumor cells. By enhancing unrepaired DNA damage in non-transformed 
neighboring cells, GH may promote tumor recurrence after treatment. Normal cells depicted in pink; tumor cells depicted in blue.

APC: adenomatous polyposis coli; EMT: epithelial-mesenchymal transition; TME: tumor microenvironment.
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