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Exame de três sistemas de cor de superfície por escalonamento de diferenças cromáticas
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Examination of three systems of surface color
by scaled color differences

VISUAL SPACE AND COLOR

Unlike sensory experience in other modalities, what one sees is a spa-
tially structured scene. Let us call it visual space. This is the end product of
the processes that starts from the retinal image of the physical space. If the
entire retina is exposed to homogeneous light of a sufficient low intensity,
the visual space is not structured and one feels as if being surrounded by
fog of light. This is called Ganzfeld experience(1). When retina is stimulated
by light of a structured pattern, one we sees a scene extending in the three
directions from the self. The self is the percept of the physical body and it
acts as the origin of visual space. Hence, the physiological processes
underlying visual space are connected to the excitation that stems from
proprioceptive stimulation. What one sees around the self is due to multiple
glances. Nevertheless, the visual space is stable and its structure can be
discussed in its own right without touching upon the underlying physiolo-
gical basis(2-3).

One always sees a percept at the end of line of sight and the percept
always appears at a finite distance from the self. In other words, neither
nothing nor infinity can be a percept. There exists a terra incognita be-
tween a percept and self, but the percept itself cannot be void. Indoors, the
percept may be a person or the wall and outdoors, the percept may be a tree
or the sky. An object that is beyond a certain distance from the body in the
physical space, e.g., a flying plane or a constellation of stars, is perceived at
a finite distance from the self. How far it appears depends upon the total
configuration of stimuli in the physical space(4). All percepts at the end of
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sight have color, achromatic or chromatic. Otherwise, one
cannot see them. The sky may be blue when it is fine and gray
when it is cloudy. In the present article, I am going to discuss
color that appears in visual space as a perceptual property of
a percept. The number of colors we can name is limited, but the
number of colors we can discriminate one from another is
extremely large, possibly seven million. Hence, to identify
each color, we have a few options than representing colors as
points in a space. According to the principle by which colors
are allocated, we have various color spaces. Color can appear
in various modes. When we observe light coming through a
small aperture, the aperture appears being filled by a color.
This appearance is called aperture mode. The color appears
floating in the air and we feel as if our finger will penetrate into
the color. The color of a perceived object appears in a different
way. We feel we can touch the color. This appearance is called
surface or object mode. The purpose of this article is to dis-
cuss three kinds of system that specifies surface colors.

COLOR SPACES

The correspondence between color and radiant power
spectrum P(λ) of light is one to (indefinitely) many. There are
many different spectra that yield the same color. The Commis-
sion Internationale de l’Eclairage (CIE) defined such a 3-D
space that all these spectra P(λ) are represented by a point
P(X, Y, Z). Hence, P(X, Y, Z) and color have one-to-one
correspondence for the standard observer. This is called the
CIE Colorimetric System and has been established on the
basis of the following color matching experiment. In a small
aperture, a standard stimulus Q

0
 is presented on its half field

and three primary lights Qµ 
are presented in the other half field.

The observer adjusts the intensity of each Qµ 
until the

appearance of the additive mixture becomes identical with the
appearance of Q

0
. In the basic experiments, Qµ 

are three mono-
chromatic lights, {R(e.g., 600nm), G(e.g., 530nm) and B(e.g.,
460nm)}, and Q

0
 is a spectrum yielding an achromatic color

(W) or a monochromatic light of λ of a given intensity. In this
way, (R

W
, G

W
, B

W
)

 
and (Rλ, Gλ, Bλ) 

are experimentally determi-
ned. A monochromatic light of λ yields the most saturated
appearance of that hue. Any non-monochromatic Q

0 
yielding a

less saturated appearance can be matched by a mixture of an
appropriate monochromatic light λ and an achromatic light W.
Because of Grassman’s law, (R, G, B) of this Q

0
 can be

calculated from (Rλ, Gλ, Bλ) and (R
W

, G
W

, B
 W

). Thus any color
stimulus is specified as a point (R, G, B), and it has one-to-one
correspondence with a color. For some Q

0
,
 
one of Qµ 

is negati-
ve, e.g., for Q

0
 (λ=500nm), Rλ < 0. The appearance of Q

0 
cannot

be matched by any mixture of R, G, B, but the mixture (500nm +
Rλ) is matched by the mixture of Gλ and Bλ. As a matter of
course, there are individual differences in matching, and CIE
defined standard matching results. Namely, this is a system
that uniquely specifies colors of aperture mode for the
standard observer. In order to avoid negative values and for

some other reasons, CIE transformed the results with the set
of primary stimuli {R, G, B} to the results that would be
obtained with another set of primaries {X, Y, Z}. These three
can not be realized by actual color stimuli and hence represen-
ting a color in terms of (X Y Z) is a mathematically derived
system. The transformation is based on the fact that human
visual process behaves as a linear system with regard to color
matching. This XYZ system can be further transformed to a
system that represents a color stimulus as a point (x, y, Y). The
variable Y is given by the integration of the luminous effi-
ciency function V(λ) and specifies brightness of the color and
the plane of (x, yY) represents hue and saturation of that
color. This plane is called a chromaticity diagram.

Once a spectrum P(λ) is given, we have a procedure to
calculate (x, y, Y). The color of aperture mode produced by
this light is uniquely specified by a point P(x, y, Y), and this
color space provides us with the foundation for modern color
reproduction technology. The spectrum P

T
(λ) of light coming

from image of an object on TV monitor is different from the
spectrum P

O
(λ) of the light reflected from the original object.

When converted to P
T
 (x, y, Y) and P

O
(x, y, Y), the two points

should be close. For any two spectra P
A
(λ) and P

B
(λ), we can

define P
A
 (x

A
, y

A
, Y

A
) and P

B
 (x

B
, y

B
, Y

B
) that are separated by a

distance d
AB

 in the (x, y, Y) space. However, the correspon-
dence between d

AB
 and the perceptual relationship between

colors A and B is not specified. In this sense, no metric is
defined in the space. Between two colors, we feel various
degrees of similarity or difference. Around a point P

0
(x

0
, y

0
,

Y
0
), we can define a region Ω comprising all (x, y, Y) that yield

colors indistinguishable from the color P
0
. The boundary of Ω

divides color stimuli into two groups, indiscriminable and
discriminable from P

0
(x

0
, y

0
, Y

0
), according to a certain crite-

rion. A point P on the boundary of Ω is called jnd (just-
noticeable-difference) of P

0
(x

0
, y

0
, Y

0
) in that direction. Mac-

Adam(5), Brown and MacAdam(6) showed that Ω is approxima-
ted by an ellipsoid. Let us call Ω a discrimination ellipsoid in
the (x, y, Y) space or a discrimination ellipse in a chromaticity
diagram (x, yY) when Y is held constant. That Ω is not a circle
means that jnd is not represented by same distance from P

0
(x

0
,

y
0
, Y

0
) according to the direction. Furthermore, Ω considera-

bly changes its size and form according to the position of
P

0
(x

0
, y

0
, Y

0
) in this space, which means this space is not

homogeneous with regard to jnd.
Light yields a color of aperture mode only when its retinal

image is a small area surrounded by the uniform background
of intensity lower than the light. One exception is the appea-
rance of the large blue sky. It is of aperture mode. The retinal
image of a physical surface gives rise to a surface color when
it appears as a percept in the structured visual space. Bright-
ness of an aperture color changes from dark to bright whereas
lightness of a surface color changes from black to white. In
order to appear as black, it is necessary to have a structured
surround. When a TV screen is homogeneous without any
picture, it can be dark gray but not black. When we see a
pattern, its part can appear real black. The light yielding a
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brown surface appears dark red when observed through a
tube. In order to be brown, blackness must be induced from
the surround. Specification of surface colors can be made in
two ways. One way is through the colorimetric analysis of
light P(λ) coming from a physical surface; P(λ) = R(λ)E(λ),
where R(λ) is the spectral reflectance of surface and E(λ) is the
spectrum of illumination. Usually (X, Y, Z) is defined under the
standard illumination, CIE C or D65. In this specification, (X,
Y, Z) mean normalized values with regard to the luminance of
illumination. The other way is through visual comparison of a
surface with a standard frame of reference for surface mode
colors under the standard observing condition. Then, the
color of surface is denoted by coordinate values of the refe-
rence frame. Standard frames of reference for this purpose are
often called color order systems. A color order system is a set
of standard color chips that are arranged in accordance with a
specified scheme. The standard chips are specified in terms of
(x, y, Y) and manufactured so as to satisfy that specification.
We have a number of color order systems and three represen-
tative systems based on different principles will be discussed
below.

MUNSELL COLOR SOLID

Its construction

This system was originally defined by A.H.Munsell, an
artist and educator in Boston. The first book, A Color Nota-
tion, was published in 1905. This is “an exeprimental system
built up with the aid of a new photometer, Maxwell disks, and
the trained capacity of the painter”(7). The basic principle is to
arrange standard color chips according to cylindrical coordina-
tes. This is called Munsell color solid (Fig. 1). The virtical axis in
the center represents lightness (called Value V), polar angle
and polar distance represent Hue H and saturation (called
Chroma C). In each coordinate, adjacent standard chips are

supposed to differ perceptually with a constant step. The
Optical Society of America (OSA) established in 1937 a com-
mittee to examine the color spacing in the Book of Color
(1929). The assessment methods used by the committee are
described in Newhall(8-10). What we use today is the Renota-
tion Munsell based on the study of this committee(11). Light-
ness V varies from 0 (ideal black) to 10 (ideal white). The hue
circle at a given V is divided into 10 sectors of the same size, 5
principal hues [red (R), yellow (Y), green (G), blue (B) and
purple (P)] and 5 intermediate hues such as yellowish red
(orange) YR, bluish green BG, etc. Each of these 10 sectors is
subdivided into 10 steps, 0 to 10, where 5 is given to the most
representative color of the sector. For instance, 5R means pure
red and 10R (= 0YR) means the hue at the border between R
and YR. Chroma C varies from 0 (gray at V) to a most saturated
color of that H at V. How far C extends depends upon H and V.
For instance, for 5R at 5V, most books give the chips, 2C,
4C,..., 12C. By comparing a sample to the Munsell solid under
a standard illumination, we can assign it a set of values (H, V/
C). Often, visual interpolation becomes necessary. In each
attribute, standard color chips constitute a series of equal
appearing intervals, which is helpful in making interpolation
easier. However, no attempt has been made to equate step
sizes between different attributes. From experience, color
practitioners know that a difference of 1V interval roughly
corresponds to a difference of 2C interval.

It is rare to see two aperture colors at a time. In Munsell
solid, on the other hand, we can see the 3-D display as a whole
and perceive supra-threshold relationships between standard
chips. Let us denote by δ

jk
 the difference we see between (H

j
,

V
j
/C

j
) and (H

k
, V

k
/C

k
). When two are neighboring chips in an

attribute, such as (H, V/C
j
) and (H, V/C

k
) where C

k
 = C

j
 ± 2, this

uni-attribute difference δ
jk
 is a constant by definition for any

C
j
. It is not in the logic of construction, however, what δ

jk
 is

represented by the distance between two points (H
j
, V

j
/C

j
) and

(H
k
, V

k
/C

k
) in the display, when two are different in more than

one attribute or in more than one step in an attribute.

Psychophysical scaling of δδ

The difference δ
jk
 is felt something like a magnitude and

can be regarded as a latent variable in the sense that no other
person than the observer can experience it However, it is
possible to ask the observer to assess its size and to define an
overt variable d

jk
 that is supposed to represent δ

jk
. Let us call

d
jk
 a scale value of δ

jk
, and two methods of scaling are explai-

ned below. One is ratio assessment of δ and the other is to
match δ to a lightness difference between two grays.

In the former, for a triplet of color stimuli (j, k, l),
 
the

observer is asked to assess the subjective ratio between two
perceptual differences δ

ij
 and δ

ik
. The observer can assign any

positive value r
i.jk

 that is felt appropriate to represent δ
ij
/δ

ik
.

The assessment is consistent in the sense that r
i..l k

 coincides
well with r

i.jl
 × r

i.jk
. Once a matrix (r

i.jk
), i, j, k = 1, 2,....., N, is

obtained, it is possible to define a matrix D = (d
jk
), N × N, where

d
jk
 = d

kl 
and d

jj 
= 0. The scaled value d

jk
 is defined with aFigure 1 -  Musell color solid
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common (arbitrary) unit, and d
ij
/d

ik 
closely reproduces the data

r
i.jk

(12-13). The second method makes the use of the fact that
Munsell Value Scale varying from the ideal black V=0 to the
ideal white V=10 with perceptually equal steps. The Munsell
grays are a most well established series of equal-appearing
intervals and standard chips with a small step size, e.g., 0.25V,
are available. A pair of colors (j, k) is presented to the observer
at a time. Using a slide rule type apparatus in which a series of
Munsell grays N

I
, I = 1, 2,......, on the moving part and a fixed

gray N
A
 is on the fixed part The task of observer is to select

such a gray N
X
 on the moving part that the lightness differen-

ce between N
A
 and N

X
 matches in size with the color difference

δ
jk
 (Fig. 2A). Then d

jk..t
 = |V

A
 - V

X
| is a scale value of δ

jk 
on an

occasion t and d
jk..t

 is given with unit of V. The observer is
encouraged to interpolate, if necessary, to respond such that
N

X
 is between N

I
 and N

I+1
. The procedure is repeated with

different N
A.

 The variation of d
jk..t

 by one observer is between
0.25V to 0.50V. Usually results are obtained from 5 observers
and the grandmean is defined as the scale value d

jk
. In this

article, the results obtained from the data D = (d
jk
) by the

second method will be discussed.
The range in which δ can be well defined as d is limited.

When two colors, (j, k), are too different, e.g., (a highly satura-
ted red and a highly saturated green), the two are qualitatively
different and δ is not felt as magnitude. Furthermore, it is not
likely, if δ

ik 
is beyond a certain level, that we can have d’s that

meet the additivity condition, d
ik
 = d

ij
 + d

jk
 for triplets that are

represented by collinear points (P
i
, P

j
, P

k
) in this order in a

color space. Hence, pairs (j, k) to be assessed are limited
within the range in which size of δ is intuitively clear to the
observers. Namely d

jk
 is at most 3.5V and D= (d

jk
), N × N, is

incomplete in the sense that it has a number of undefined
vacant cells.

Multidimensional representation of Munsell solid

From a data matrix D = (d
jk
), N × N, with N Munsell colors,

we can construct a configuration of N points {P
j
} in an m-

dimensional space Rm such that inter-point distances 
jk
 re-

produce data d
jk
. This is a generalized Multidimensional Sca-

ling (MDS) and its steps are given in Fig. 2A. In an ordinary

MDS, {P
j
} is constructed in Em, an m-dimensional Euclidean

space. In the procedure in Fig. 2A, colors are embedded as
{P

j
} in Rm, a Riemannian space of constant Gaussian curvature

K. According to whether K is positive, or 0, or negative, Rm is
elliptic or Euclidean (Em), or hyperbolic. These spaces are
visualized in a 3-D Euclidean map (Poincaré’s model) in diffe-
rent ways according to K. The configuration {P

j
} is defined in

the Euclidean map, EM. In Fig. 2A, 
jk
 means the distance in

the Euclidean map between P
j
 and P

k
, and 

jk 
means the length

of corresponding geodesic in the Munsell solid. How ρ and d
or  and , are related is completely determined by the para-
meter K only. If K= 0, then d = ρ and  = , and it is not
necessary to consider the Euclidean map. It is assumed that a
power relationship holds between d and , d = α β. The
parameter α only depends upon the units by which d and 

are defined and has no substantive meaning. On the hand, the
exponent β (> 0) determines the shape of curve when d is
plotted against . It is concave upwards when β > 1 and
convex upwards when β < 1. If β = 1, d is proportional to  and
the curve is a straight line passing through the origin. For a
given D = (d

jk
), the program determines optimum values of m

(dimensionality), the sign and value of K, the configuration
{P

j
}, and the values of α and β.
The experimental studies started from 1960 (see Table 1(13)).

In the beginning, the number of colors, N, was limited because
of the capacity of computer, and {P

j
} was constructed in

Euclidean space E only. After 1980, I could obtain results with
N = 120, 278, etc. When {P

j
} was constructed in Rm, the

following results were obtained. The dimensionality m turned
out to be 3, K is not far apart from 0, and β is close to 1.0. The
concentric circle like pattern inside the outmost circle in Fig.
3A is an example of {P

j
} that has been obtained under the

constraint of K being 0. Let us call it {P
j
} in E3. Since the axis

representing the V-axis turned out orthogonal to the plane
representing H and C, all points are vertically projected on the
H-C plane at an arbitrary level of V

0
. If a positive value of K is

taken, equi-chroma circles of {P
j
} with this K are slightly more

equally separated from C to C+2(13). However, the difference

Figure 3 - A: An example of constructed configuration {Pj} and individual
hue vectors {fαα}i; B: An example of coincidence between djk and jkFigure 2 - Procedures of scaling and spatial representation
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between {P
j
} with K > 0 and {P

j
} in E3 is small, and hence the

discussion will be limited to the latter only. The Munsell solid
is displayed by standard chips in the physical space E3 and it
is important to understand what is represented by inter-point
distances in this display.

Fig. 3B shows an example of plotting of d against , inter-
point distances in {P

j
} measured by an arbitrary unit. Because

β is almost 1.0, points scatter around the line passing through
the origin. The slope depends upon the unit of . We can re-
scale the abscissa so as to make the slope 45 degree and re-
denote it as . The degree of scatter of points around this 

is given by RMS (root-mean-squares) of   (d - ), where M is
the number of d’s.

RMS =
       1  Σ

jk
 (d

jk
 - 

jk
)2                               (1)

            M

Values of RMS were 0.20 ~ 0.26V when {P
j
} was construc-

ted from a data matrix D = (d
jk
) in E3. This value of RMS is only

about 2 times of the jnd threshold of lightness discrimination
in the Munsell gray series. Hence, we can conclude that Mun-
sell chips can be embedded as {P

j
} in E3 with a sufficient

degree of reproducibility. This assertion does not imply that
the entire Munsell solid is of Euclidean property, because
comparisons between d and  are limited in the range of
smaller than 3.5V. The space implied by E3 is a 3-dimensional
manifold with locally Euclidean metric. The configuration {P

j
}

in E3 represents the basic structure of the Munsell solid. Fig.
3A is {P

j
} based on two sets of D = (d

jk
), in each d

jk
 are mean

results of 5 observers. It is known that even if {P
j
}

i
 are indivi-

dually constructed from D
i
 = (d

jk
)

i 
of observers i of normal color

vision, these {P
j
}

i
 exhibit essentially the same structure(13).

Chips P
j
(H, V

j
/C

j
) of the same H form a regular lattice

having V and C as two orthogonal coordinates, and 1V step
corresponds to 2.3 C step on the average. This fact is in
agreement with the intuition of color practitioners stated in
3.1. Chips P

j
(H

j
, V/C

j
) of the same V forms a concentric circle

type configuration in a flat plane that is ordered according to
V. The Munsell V is defined in terms of Y of the reflected light.
Often the tendency is pointed out that color of a given Y tends
to appear brighter or lighter when its saturation is high (Helm-
holtz-Kohlrausch effect). If this effect is apparent with {P

j
},

each plane of constant V should be curved upwards at its rim
like a saucer. Presumably, points P

j
 are not dense enough to

make this effect explicit. The form of {P
j
} in the H-C plane is

topologically in agreement with the Munsell notation of H and
C. Many quantitative deviations from Munsell notation are
noticeable, however. The program constructs {P

j
} so as to

minimize RMS (1) and some ad hoc distortions for this purpo-
se only may have been introduced to {P

j
}. However, there are

some systematic deviations that cannot be regarded as arti-
facts. One is the anormaly of H spacing in the region from B to
P. Munsell defined {R,Y,G,B, P} as 5 principal hues and divi-
ded H-circle into 5 equal sectors of 72 degree. The most

representative hue in each sector is denoted such as 5R, 5Y,
etc. In {P

j
}, 5G and 5B are separated by about 30 degree only.

It is not a surprise that the a priori defined structure of hue
circle is not completely supported by empirical observation.

A color appears reddish, yellowish etc. Its saturation
changes according to the degree of achromaticness involved.
From assessment of these perceptual components, a set of
unit vectors {fα} can be defined in the same space in which
{P

j
} has been constructed. The procedure is described in Fig.

2B. A color j is presented one at a time. The task of observer is
to divide a line segment of length 10 into parts N(j) and ξα(j) in
accordance with the degree of grayness and principal hue
component α. The grayness and hue components that the
observer sees in a color j are latent variables and lengths, N(j)
and ξα(j), are their overt variables. Usually, two hue compo-
nents are sufficient to describe the appearance of a color j. If it
is saturated orange, N(j) is close to 0 and only ξ

R
(j)

 
and ξ

Y
(j)

 
are

positive. For a less saturated color j, N(j) is large and Σξα(j) is
small. In this case, the chromatic impression is so obscure for
some observers that they assign positive values to three ξα(j).
Hue vectors {fα} can be defined individually from individual
data matrix {ξα(j)}

i
. An example of {fα}

i
 of 5 observers is shown

along the outmost circle in Fig. 3A. Five bundles inside the
circle are individual fα i 

when 5 hue names were used and four
bundles outside the circle are individual fαi

 when 4 opponent
hue names were used. According to his diary of April 13, 1900,
Munsell had the idea of using the five hues as the cornersto-
nes of the hue circle. He referred to the rainbow as an example
in nature(12). It is an interesting question how many hues
human sees in the rainbow. The observers do not have any
difficulty in specifying Munsell chips in terms of the four hue
names. Adding P helps only to reduce the range of other
bundles, and the bundle P is almost in the middle of bundles of
R and B. In this sense, P is redundant, and hereafter discus-
sion will be limited to four principal hues, and four vectors
based on averaged data {ξα(j)} are denoted as {fα}, α = R, Y, G,
and B. Each fα goes through the middle of the respective
bundle outside of the circle in Fig. 3A.  How fα are defined from
the data {ξα(j)} is explained with regard to Fig. 4A.

The set {fα} is defined in the H-C plane at an arbitrary level
of V, V

0
. All point P

j
 are projected along V-axis on this plane as

p
j
. Chroma C and Value V

 
of a color j are respectively represen-

ted by the vector C
j
 stretching from the origin to p

j 
and by V

0

plus the distance to P
j
 from this plane. The coordinate of P

j
 on

fα is denoted as 
α(j). Since fα and fβ are not orthogonal, how to

define the coordinate is not unique, and α(j) is defined as
shown in Fig. 4A. This is the contravariant component of C

j
 in

the direction of fα. The reason why this definition was adopted
was explained before(14-16). When p

j
 is not in the sector spanned

by fα and fβ, α(j) < 0. It is assumed that, when data ξα(j) are
plotted against α(j), points scatter around a power function
Aα α

Bα for P
j
 in which ξα(j) > 0 and 

α(j) > 0. It is also assumed
that ξα(j) = 0 for P

j
 in which 

α(j) < 0. But, these points were not
included in the curve fitting. Anomalous pairs (ξα(j) > 0 and
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α(j) < 0) are regarded as outsiders. From the data matrix
{ξα(j)}, {fα} and parameters Aα 

and Bα 
were defined so as to

make the number of outsiders smallest and the scatter of
points around Aα α

Bα as small as possible. The possible ran-
ge of ξα 

is between 0 and 10, and the degree of scatter is given
by RMS of (ξα(j) - Aα α

Bα). Fig. 4B shows an example of
plotting ξαY

(j) against 
Y
 (j) for an observer. The values of Aα

and Bα 
changes according not only to the principal hue α but

also to V
j
 of color j (Table III(16)).

The anomalous H-spacing in {P
j
} stated in 3.3 that colors

of 5B are located too close to colors of 5G (about 30 degree) in
Fig. 3A suggests two possibilities. One is that, among the four
cornerstones, B and G do not look so different as G looks
different from Y. The other is that the Munsell notation of 5B
is not the pure Blue. At first, I was inclined to the first interpre-
tation. But, now it has become clear that the second interpre-
tation is correct. The real Blue for human eye is not at 5B but
close to the hue denoted as 5PB. Other fα, α = R, Y, G, (and P),
are in the direction of colors of 5Hα Munsell notation.

Discrimination ellipsoid of surface color

In the CIE space, points P(x, y, Y) of colors that are indis-
criminable from P

0
(x

0
, y

0
, Y

0
) forms an ellipsoid Ω (Section 2). A

standard color stimulus Q
0
 and a comparison color stimulus Q

are presented simultaneously. It is a matter of probability
whether Q is discriminated from Q

0
 or not. The procedure

often used to define Ω for aperture color is as follows. The
observer is asked to adjust Q so that its appearance matches
that of Q

0
. If the matching is repeated a number of times, P(x, y,

Y) of matched Q are distributed around P
0
(x

0
, y

0
, Y

0
) and the

region comprising these points with a specified probability is
defined as Ω. This called the matching method. In the first
experiment of MacAdam(5) in which Y was held constant, Q
was changed along a specified direction ω from Q

0 
on the

chromaticity diagram (x, y|Y) so as to obtain the univariate
distribution of matched Qω. Then, such 

ω was determined
that Qω falls between Q

0 
and 

ω with a specified probability.
Direction ω was varied so as 

ω to surround Q
0
. Then, Pω(xω,

yω,Y) of ω were found fitted by an ellipse around P
0
 (x

0
, y

0
, Y)

in the (x, y|Y) plane. This procedure will be called “guided

matching”. Guided matching can be performed in the 3-D (x, y,
Y) space also. In the other procedure, the observer controlled
three knobs to adjust Q in the (x, y, Y) space, which will be
called “free matching”. The results of free adjustment, P (x, y,
Y), follow a 3-D Gaussian distribution having P

0
(x

0
, y

0
, Y

0
) as

the mean. Its cross-section at a fixed value of probability
density forms an ellipsoid Ω.

We cannot directly apply the matching method when Q
0

and Q are surface color stimuli, e.g., Munsell chips, because Q
cannot be continuously changed during the observation. Ho-
wever, it is possible to prepare an appropriate set of Q

i
 around

Q
0
, and to ask the observer to make binary judgment about (Q

i
,

Q
0
) whether the two appear the same or not. Let us denote by

p(Q
i
, Q

0
) the proportion that Q

i
 is judged different from Q

0
.

Suppose that we have data p(Q
i
, Q

0
) with Q

i
 that surround Q

0

with various directions ω. Let P(x, y, Y) be the point represen-
ting the light reflected from a surface under the standard
illumination. Then, a procedure was formulated by which we
can define, from p(Q

i
, Q

0
) observed only with limited number

of Q
i
’s, an ellipsoid Ω in the CIE space around P

0
(x

0
, y

0
, Y

0
) that

is equivalent to Ω that would be obtained by the 3D-guided
matching(17).  Denote by 

ω the color on the boundary of Ω in
the direction ω and by Pω(xω, yω,Yω) its position on the chroma-
ticity diagram. Then, we can expect that the surface color (Hω,
Vω/Cω) represented by Pω(xω, yω,Yω) is distinguished from (H

0
,

V
0
/C

0
) with a specified probability, for any direction ω and for

any value of the probability. If the data p(Q
i
, Q

0
) are defined

with repeated binary judgments of an observer i, we can define
individual Ω

i
. If p(Q

i
, Q

0
) are group data, one Ω is defined for

the group.
This method was tested with painted surfaces(17) and also

with simulated surface colors on a monitor(18). When a color
stimulus Q(x, y, Y) is presented on the monitor with the sur-
round darker than it, it appears as an aperture color. When the
surround is sufficiently brighter, on the other hand, it looks
like a colored patch pasted on the background. Though this
color is textureless, it is of surface color mode in other res-
pects. It can be black and brown. With six simulated surface
colors Q

0
 (A, R, Y, G, B, and Brown respectively represent

simulating Munsell gray of V6, 5R5/9, 5Y9/7, 10G6/5, 5PB4/10,
and 5YR4/5), Ω

i 
were obtained with two observers. Each Ω

i
 on

the (x, y, Y) space represented data p(Q
i
, Q

0
) very well, and,

except Ω
i 
for yellow Y, Ω

i 
is similar to Ω that is expected for the

same Q
0
 of aperture color mode(18-19). As to the simulated Y, Ω

i

of both observers were very elongated in the direction of
purity. It is yet to be seen whether the same prolongation
occurs with Ω for painted yellow surface when Ω is construc-
ted from binary judgments. An example(17) suggests it might
be the case.

Denote by 
ω(Hω, Vω/Cω) the Munsell color at the bounda-

ry of the mean ellipsoid of Ω
i
 in the direction ω from Q

0
, then,

when ω is the direction representing H change, ∆H = (Hω - H
0
)

is the jnd differences of H. When ω is along the V-axis, ∆V =
(Vω - V

0
) is the jnd difference of V. The jnd difference of C, ∆C,

Figure 4 - A: Explanation of principal hue vectors fαα and hue components

αα  in Munsell solid; B: An example of individual curve Aαα αα
Bαα, αα = Y
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is defined in the same way. If the Munsell space (H, V/C) is
perceptually uniform with regard to δ at jnd level, each of
these ∆’s is expected to be constant for all Q

0
. The values of

∆V(Q
0
) are fairly constant and in the order of 0.25V. This value

corresponds to RMS (1) between d
jk
 and 

jk 
in Section 3.3. As

to ∆H(Q
0
) and ∆C(Q

0
), the values are less stable(19). It has not

been tested what would be if ω(Hω, Vω/Cω) are converted to
jnd distances ∆ in the configuration {P

j
} in E3 that has been

constructed from D = (d
jk
). At present, {P

j
} in E3 is not dense

enough for this purpose.

COLOR DIFFERENCE PREDICTED BY COLOR
COMPONENT DIFFERENCES

Suppose that {P
j
} in Fig. 4A is the configuration directly

plotted according to Munsell notation P(H
j
 V

j
/C

j
). Then, in

order to predict d
jk
 from DV and 

jk
 (H, C) shown in the figure,

we have to define.

 
jk
 =     (2.3∆V)2 + 

jk
2 (H,C)     (2)

Then, RMS (1) for this 
jk
 is 0.62V (Table II(20)). Even if 

jk
(H,C) is multiplied by an appropriate coefficient according to
the hue region, RMS (1) is in the order of 0.54V (Table I(21)).
Suppose that Fig. 4A is {P

j
} in E3 having been constructed

from data D = (d
jk
). In this case, the vertical axis is not the

Munsell V itself, but the axis representing V, and 
jk
 shown in

the figure directly gives the value of d
jk
, provided 

jk
 < 3.5V.

The value of RMS (1) for this 
jk
 is known to be in the order of

0.25V. At present, {P
j
} in E3 from data D = (d

jk
) does not cover

the entire body of Munsell solid. However, it is likely that if D
is obtained with sufficient large number of Munsell colors, we
can have {P

j
} in E3 with locally Euclidean metric that repre-

sents any d
jk
 (< 3.5V) as the inter-point distance 

jk
 with a

sufficient accuracy. In so far as supra-threshold differences of
medium level are concerned, it is very likely. Furthermore, in
the same space, we can have a set of hue vectors {fα} from
which we can predict how the color represented by P

j 
will

appear to human eye. This is a comprehensive spatial syste-
matization of human cognition of surface colors. However, it
seems to me not likely that the effectiveness of spatial repre-
sentation can go beyond this level. In Fig. 4A, geometrically
we can relate 

jk
 to ∆V, ∆ξα, and ∆ξβ. These differences ∆’s are

defined in the figure. If this relationship is perceptually mea-
ningful, we can relate d

jk
, through 

jk
, to these component

differences ∆V, ∆ξα, and ∆ξβ. It will provide us with the cogni-
tive basis for why we see the difference δ

jk 
scaled as d

jk 
bet-

ween colors j and k that have these component differences.
This possibility was tested but the results were not very
promising(22). If we want to predict d

jk
 from component diffe-

rences, we must combine ∆V, ∆ξα, and ∆ξβ 
in a way different

from the geometrical relationship holding in Fig. 4A(23). Spatial
representations are useful for unique identification of color
stimulus, for defining color difference as a distance 

jk
, and

for locating hue vectors fα. Spaces used for these purposes

are means, and we are not necessarily obliged to regard all
geometrical relationships in these representations to be per-
ceptually or cognitively meaningful.

Let us denote by 
α(H|V/C) the curves obtained by plot-

ting the assessed principal components data {ξα(j)} for Mun-
sell color (H

j
, V

j
/C

j
) against H

j
 separately according to V

j
/C

j.

(two examples in Fig. 5).
 
Charts 

α(H|V/C), α = R, Y, G, B, are
prepared for colors 2V - 7V and 2C - 10C and for some colors of
8V and 12C(22-23). For any surface colors j and k, if their equiva-
lent Munsell notations are known, we can define 

α(H
j
, V

j
/C

j
),

α(H
k
, V

k
/C

k
) and their differences ∆V, ∆ α. Sometimes it

becomes necessary to use two or three curves 
α(H|V/C). To

predict dj
k
, the scaled color difference between these colors,

various functions of (∆V, ∆ α) were tested. Should a fixed set
of coefficient values be used for colors in all hue regions and
of all levels of V and C, it was found that

 
jk
 = 0.459 DV + (0.610 + Σα 

aα 
∆ a)                                      (3)

   a
R
 = 0.199, a

Y
 = 0.031, a

G
 = 0.098, and a

B
 = 0.136

gives the best result. As 
jk
 in (1), 

jk
 is defined with the unit

of V, and RMS of (d
jk
 - 

jk
) was 0.34V for d

jk
 in Section 3.2 (M

= 899).  For colors differing in H and C only (∆V = 0), RMS is
reduced to 0. 28V. When j and k are identical colors (∆V = 0,
and all ∆ α= 0), 

jk
 = 0.61V. This is not contradictory because

 is for predicting a clearly perceptible difference between
two surface colors when they are not directly juxtaposed.
Even if j and k are within a jnd difference, some observer will
respond with not-identical grays (V

A
, V

X
), X ≠ A, and d

jk
 > 0.

This predictor 
jk 

is a direct combination of two sets of human
assessment, d

jk 
and ξα(j). No spatial representation of colors is

intervened in this procedure.

Figure 5 - Two examples of principal hue components on Munsell Hue-circle
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OSA - UCS (OPTICAL SOCIETY OF AMERICA-
UNIFORM COLOR SCALES) SYSTEM

The OSA - UCS system is a 3-D display of standard color
chips allocated according to the regular rheombohedral lattice
structure(24-26). This is an entirely different principle by which
the Munsell system Color chips have been assembled. Except
colors on the boundary of solid, each color is surrounded by
12 nearest neighboring colors, all perceptually equally diffe-
rent. In Fig. 6A, 12 colors denoted as (1, 1, 1), (0, -2, 0), etc, are
supposed to differ from the color denoted as (0, 0, 0) with the
same perceptual size. Namely, all thick lines in Fig. 6A are
physically the same length and represent color differences of
the same size. The structure is elongated by placing the cen-
tral point colors at (0, 2, 0) or (-1, 1, 1) etc. Lattice points are
specified by the orthogonal coordinate axes L, j, g. and stan-
dard chips are placed with the step of 2 in each axis. The
vertical axis L represents lightness. In contrast to Munsell V, L
is not a function of CIE Y alone. If the solid is sliced at a fixed
level of L (horizontal cleavage), standard chips form a rectan-
gular lattice (j, g) where j comes from the French jaune mea-
ning yellow and g means green. For bluish colors j < 0 and for
yellowish color j > 0.  For reddish colors g < 0 and for greenish
color g > 0.  Fig. 6B shows a part of the horizontal cleavage at
the middle gray L = 0. Standard chips were so selected that all
neighboring pairs, (j, g) and (j±2, g) as well as (j, g) and (j, g ±2),
appear to have the same size of difference δ. In the vertical
cleavage in which j + g = a constant, we have a rectangular
lattice rotated 45 degree. Fig. 6C shows a part of the vertical
cleavage passing through the central gray chip (0, 0, 0). In this
cleavage, j + g = 0, and the scale of the abscissa is j (= -g). Four
chips being neighbor from (L, j) in oblique directions, (L+1, j-1),
(L-1, j +1), (L+1, j+1), and (L-1, j-1) are supposed to differ from

(L, j) with the same size δ, and this δ means the difference
stated in the horizontal cleavage. Although the solid is displa-
yed in the 3-D Euclidean physical space E3, no geometrical
structure is presupposed except the local uniformity of color
differences stated above. In Fig. 6C, all distances between
horizontal or vertical neighbors, e.g., (L, j) and (L, j±2) or (L, j)
and (L±2, j), are physically the same. Whether these chips
appear to have the same difference δ’ and how δ’ is related to
δ are not in the logic of selecting standard chips. If the solid is
sliced in an oblique direction so that L = j + constant, standard
chips form a mesh consisting of regular triangles (slant clea-
vage). Fig. 6D shows a part of a slant cleavage passing
through the central gray (0, 0, 0) in which L = j. All lines
connecting points are supposed to represent color differen-
ces of the same size δ.

The uniformity of δ between legitimate pairs of standard
chips was tested by the use of , Equation (3) in Section
4(23,27). Color differences at issue are in the range to which  is
applicable and Munsell notation (H, V/C) of the OSA standard
chips are known. Values given in Fig. 6B,C,D are 

JK 
calcula-

ted for legitimate neighbors (J, K) in the respective cleavages.
Means (M) and standard deviations (SD) of 

JK 
were obtained

in each fixed direction, e.g., all horizontal neighbors at various
levels of g or all vertical neighbors at various levels of j in Fig.
6B and along all oblique directions from right-left or along all
oblique directions from left-right in Fig. 6C. The value of SD as
an index for degree of non-uniformity is in the order of 0.21 -
0.27V. In the light that the instability in  is 0.34V, we can
conclude that δ

JK
 are of uniform size in the respective direc-

tions. However, M’s of 
JK

 exhibit a systematic trend, though
slight. When (J, K) differ in j or g only (L

J 
= L

K
), e.g., horizontal

and vertical directions in Fig. 6B and horizontal directions in
D, 

JK
 are in the order of 0.93 - 1.00V. When (J, K) include

lightness difference (L
J
 ≠ L

K
), e.g., oblique directions in Fig. 6C

and D, 
JK

 are in the order of 1.10-1.20V.
The OSA-UCS rhombohedral lattice solid covers almost

the entire body of the Munell solid. As discussed in Section
3.3, the Munsell solid can be regarded as a 3-D manifold with
local Euclidean metric. In so far as legitimate neighbors are
concerned, chips in OSA-UCS satisfy the condition of local
uniformity fairly well. Hence, it would be natural to expect that
δ’ for non-legitimate oblique neighbor (j+2,g) and (j, g+2) in
Fig. 6B is given by ' =    δ(j)2 + δ(g)2, where δ(j) and δ(g) are
two legitimate differences, between (j, g) and (j+2, g) and
between (j, g) and (j, g+2). It was found, however, that '
calculated for δ' is systematically smaller than ' for ' in all
horizontal cleavages, (M of ') = 1.15V whereas (M of ') =
1.35V. This result casts doubt upon the natural expectation
that the OSA-UCS rhombohedral lattice solid is locally Eucli-
dean. Another interpretation is that this discrepancy is due to
the possible non-additivity of the measure . This is an open
question.Figure 6 - Examples of uniformity check of OSA-UCS
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NCS (NATURAL COLOR SYSTEM) OF SWEDEN

This is another system of surface color based on human
assessments. The principle according to which the standard
color chips have been assembled is entirely different from that
for the Munsell and that for the OSA-UCS. The NCS chips are
selected so that they gradually vary in each of the three
perceptual attributes. Chips are specified as (φ, s, c) where s
(blackness) varies from 0 to 100, c (chromaticness) from 0 to
90, each with the step of 10. In contrast to that Munsell V is
only a function of the luminance reflectance Y and indepen-
dent of H and C, s is not only a function of Y but also depends
upon c and hue. Hue φ is denoted such as Y50R, which means
that this orange color is perceived as consisting of 50% of
redness and 50% of yellowness(28-29). In each sheet of φ, stan-
dard chips are displayed as shown in Fig. 7A. This is a part of
the sheet of Y50R. Chips of constant s are shown on an
oblique line. The NCS color atlas includes a plate showing a
hue circle. Most saturated colors of φ are displayed on a circle.
Hence, s and c of these colors are not constant. Fig. 7B shows
a part hue circles for φ having same s and c. The inner circle is
for (s=20, c= 60) and the outer circle is for (s=10, c=70), each
varying with the step of φ = 20. Between R10B to B90G, chips
of (s=10, c=70) are not available.

The purpose of NCS is to specify the appearance of an
individual color in terms of its perceptual attributes, not to
define difference between two colors. It is an interesting ques-
tion to ask whether the gradual change of appearance in an
attribute implies the uniformity of perceptual differences δ
between neighboring chips (J, K) along that attribute, e.g., (φ,
s, c) and (φ, s±10, c) or (φ, s, c) and (φ, s, c±10), or (φ, s, c) and
(φ±20, s, c). Numerical values in Figs. 7A,B are 

JK
 calculated

by Equation (3). In Fig. 7A (φ=Y50R), mean (M) and standard
deviation (SD) of 

JK
 are 0.91V and 0.10V along the oblique c-

axis and 1.11V and 0.16V along the vertical s-axis. The fact that
SD is small in each axis and M is larger along s-axis is found in
other sheets of φ.  In Fig. 7B, M and SD are 1.00V and 0.16V for
the inner circle, 1.07V and 0.21V for the outer circle. That SD’s
are small in the respective attributes leads to an interesting
conclusion that gradual changes in each attribute correspond

Figure 7 - Examples of uniformity check of NCS

to color differences δ of a constant size between neighboring
chips. In the logic of construction of NCS, it is not implied that
δ and hence M should be the same between the attributes. It is
a matter of course in Fig.7 B that 20 interval of φ means larger
differences for more saturated colors of the outer circle than
for less saturated color of the inner circle (M = 1.07V vs.
1.00V). In sheets of constant φ, M along c-axis is 0.96V on the
average with SD of 0.10V whereas M along s-axis is 1.15V on
the average with SD of 0.05V.

CONCLUSION

For human, surface colors play an important role in recog-
nizing objects in the visual space. A saurface color space is a
systematization of this recognition process. In daily life,
colors are denoted by names. Color naming is to divide a
continuous color space into a few categories. As stated in 3.3,
Munsell selected five principal hues taking the rainbow as an
example in nature. This is about the same categorization as
Newton first did with the spectrum he observed. Later, New-
ton added orange and indigo. It is known that as many as 200
different hues can be distinguished in the spectrum under
ideal viewing condition(30). Dividing the spectrum into seven
names is a categorization of aperture colors. As to surface
colors, the number of discernible colors is a few million(31) and
color nomenclature is much richer, such as red, scarlet, crim-
son, maroon, etc. Clearly, how to divide a space of surface
color into categories cannot be independent from culture and
language. However, the systematizations of surface colors as
discussed in this article are concerned with the cognitive
process deeper than the level that is bounded to culture and
language. Indow and Watanabe(32) demonstrated that human
observers can memorize the scheme of Munsell notation and,
without comparing with the Munsell standard chips, they can
specify color samples in terms of (H, V/C).

RESUMO

Em oposição aos sistemas colorimétricos da CIE (Commission
Internationelle d’Éclairage), nos quais as cores são especifi-
cadas com base no espectro luminoso, apresenta-se um siste-
ma para cor de superfícies que emprega os discos padrões. De
acordo com o princípio pelo qual os discos padrões são sele-
cionados e arranjados, obtém-se vários sistemas diferentes.
Três sistemas representativos foram examinados, o de
Munsell, o da Optical Society of America – Uniform Color
Scale, e o Natural Color System da Suécia. Cada sistematiza-
ção da cognição humana de cores e de como discriminamos a
diferença entre dois dados discos, j e k, desempenham papéis
diferentes em cada representação espacial. Baseado nas res-
postas dos observadores, a diferença perceptual foi represen-
tada por um valor numérico d

jk
. A estrutura de cada sistema foi
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examinado quantitativamente pela observação do comporta-
mento de djk. Este artigo é uma revisão dos estudos do autor
seguindo esta linha.

Palavras-chave: Visão de Cores, Colorimetria, Escalas Psicofí-
sicas, Representação Multidimensional
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