# Avaliação ecocardiográfica do átrio esquerdo de cães sadios por meio do modo-M convencional e do modo bidimensional

[Echocardiographic evaluation of the left atrium of healthy dogs using the conventional M-mode and the bidimensional mode]

D.G. Prada<sup>1</sup>, V.M.C. Oliveira<sup>1</sup>, M.H.M.A. Larsson<sup>2</sup>, F.L. Yamaki<sup>1</sup>

<sup>1</sup>Médica veterinária autônoma <sup>2</sup>Faculdade de Medicina Veterinária e Zootecnia-USP - São Paulo, SP

#### **RESUMO**

Avaliaram-se o átrio esquerdo (AE) utilizando-se o método bidimensional (2-B) (corte transverso) e a relação átrio esquerdo:aorta (AE:Ao), em um grupo de 40 cães adultos e sadios, entre um, cinco e sete anos de idade e com pesos corpóreos de 3,2kg a 38,3kg, e compararam-se esses valores aos do modo-M convencional. Observou-se diferença entre AE e Ao nos dois métodos e entre os seus respectivos índices. A correlação foi positiva alta entre peso e superfície corpórea e entre AE no modo 2-B (AEB) e AE no modo-M (AEM). Não se observou correlação entre os índices, nos dois métodos, com o peso e a superfície corpórea, isto é, os índices são independentes do peso ou da superfície corpórea. Concluiu-se que o AEB é maior do que o AEM, o índice médio para o AEB:AoB é de 1,379, e o intervalo de confiança de 1,337 a 1,422. O índice no método 2-B é, portanto, superior ao índice no modo-M.

Palavras-chave: cão, ecocardiografia, átrio esquerdo, normal

## **ABSTRACT**

The left atrium (LA) was evaluated through the bidimensional method (2-D) (short axis) and the relation left atrium:aorta (LA:Ao) in a group of 40 healthy adult dogs between 1.5 and 7 years of age and weights ranging from 3.2 to 38.3kg, and these values were compared to those in the conventional M-mode. Comparing the variable LA and Ao with the two methods and their respective indexes, significant statistical difference was observed (P<0,001), high positive correlation between the weight and LA-2D and LAM, between body surface and LA-2D and LAM. A difference between LA and Ao in both methods and these respective indicators were observed. The association was higly positive between weight and body surface area (BSA) and between M- mode LA (LAM) and 2-D mode LA (LA-2D). No correlation was observed between these indicators and weight and BSA, in both methods, so these indicators are weight and BSA-independent. Conclusions: LA-2D is bigger than LAM, the LA-2D:Ao-2D average index is 1,379 and the confidence interval is 1,337 to 1,422. The index in the 2-D method is, therefore, superior to the index in the M-mode.

Keywords: dog, echocardiography, left atrium, normal

# INTRODUÇÃO

O átrio esquerdo (AE) pode aumentar de tamanho e massa por sobrecarga de pressão e volume em várias doenças cardíacas (Kihara *et al.*, 1988). A causa mais comum para o aumento atrial esquerdo, em raças de cães pequenas, é a degeneração da valva mitral, que resulta na regurgitação de sangue do ventrículo esquerdo

para o átrio esquerdo, durante a sístole ventricular. O tamanho do AE é de especial interesse na avaliação da gravidade da doença, uma vez que o grau de aumento do AE está relacionado com o grau de regurgitação (Pape *et al.*, 1991), e é por meio desta avaliação, em associação aos sintomas clínicos, que a terapia será ou não instituída (*Louisville*, *Kentucky*, *ACVIM*, 2006).

Recebido em 1 de maio de 2011 Aceito em 6 de março de 2012 E-mail: danielle@petheart.com.br

A ecocardiografia é o método padrão para a avaliação não invasiva da função, da anatomia e das doenças cardíacas em animais domésticos e em seres humanos. Planos padronizados de imagem foram descritos para a ecocardiografia bidimensional em cães (Thomas et al.,1993) com base no que já havia sido descrito na medicina humana. A avaliação da doença cardíaca esquerda, em geral, inclui a mensuração do tamanho do AE (Kienle e Thomas, 2002), que permite identificar a gravidade da doença cardíaca e o risco de se desenvolver insuficiência cardíaca congestiva esquerda (ICCE). Em cães, esse risco aumenta com o aumento do átrio esquerdo, uma vez que tal fato representa um aumento de pressão local (Rishniw e Erb, 2000).

O modo-M, ou modo unidimensional, tem sido utilizado para estimar o tamanho do átrio esquerdo em animais baseando-se numa metodologia ecocardiográfica preconizada na medicina humana (Sahn *et al.*,1978).

Bonagura (1983) e Lombard (1984), utilizando-se deste método, correlacionaram o diâmetro do átrio esquerdo ao peso corporal e à superfície de área corporal e derivaram, também, uma medida de átrio esquerdo (AE) independente do peso corporal (AE:AO). A relação AE:AO é um índice independente de peso corporal, e o mais importante é que oferece uma forma mais acurada de medida de AE para qualquer indivíduo, pois o diâmetro da aorta no animal adulto tende a mudar menos, com o passar do tempo, do que o peso corporal (Brown *et al.*, 1974; Boon *et al.*, 1983; Lombard, 1984; Boon, 1998).

Contudo, o modo-M convencional tem suas limitações devido à dificuldade em incluir a porção mais ampla do átrio esquerdo com o cursor do modo-M, resultando em medidas que subestimam o tamanho real da cavidade em questão. Consequentemente, muitos cardiologistas e ecocardiografistas têm utilizado o modo bidimensional, uma vez que este permite visibilizar e medir áreas específicas da aorta e do átrio esquerdo, evitando, assim, as possíveis limitações do método de modo-M convencional. Estudos têm demonstrado que o diâmetro do átrio esquerdo e o resultante índice AE:AO estão subestimados pelo modo-M convencional, comparado às técnicas bidimensional e modo-M anatômico (Rishniw e Erb, 2000; Oyama, 2004;

Oyama e Sisson, 2005). Este índice aumenta consideravelmente à medida que o átrio esquerdo aumenta, sugerindo que as medidas do modo-M anatômico e do modo bidimensional apresentam maior sensibilidade para o aumento atrial esquerdo "versus" as do modo-M convencional (Hansson *et al.*, 2002).

Em se tratando do modo bidimensional, as medidas podem ser feitas diretamente a partir do modo bidimensional e podem incluir a circunferência, a área ou o diâmetro do átrio esquerdo (Rishniw e Erb, 2000; Hansson *et al.*, 2002). O método bidimensional para mensurar o átrio esquerdo e obter a relação AE:AO está sendo amplamente utilizado, porém apenas recentemente estes valores vêm sendo sistematizados e normatizados.

Ecocardiografistas devem estar atentos às limitações do modo-M convencional e devem considerar a incorporação de um dos métodos de mensuração pelo modo bidimensional ou pelo modo M-anatômico na rotina de exames ecocardiográficos (Oyama, 2004).

Os objetivos deste estudo foram comparar os dois métodos, utilizando-se o método bidimensional da aferição do diâmetro do átrio esquerdo no corte transverso em locais específicos, relacionar a medida obtida com o peso e a superfície corpórea e estabelecer o índice AE:Ao para este método específico.

# MATERIAL E MÉTODOS

Foram utilizados 40 cães adultos, não sedados, entre um, cinco e sete anos de idade, sendo 14 machos e 26 fêmeas (12 machos inteiros, dois machos castrados, 17 fêmeas castradas e nove fêmeas inteiras), com diferentes definições raciais e pesos corpóreos (de 3,2kg a 38,3kg). O projeto foi aprovado pela Comissão de Bioética. sob o número 767/2005, em 18/10/2005. Os animais foram divididos em quatro grupos, a saber: cães com peso corpóreo até 10kg, entre 10,1kg e 20kg, entre 20,1 e 30kg, entre 30,1 e 40kg, todos animais de companhia, trazidos ao Hospital Veterinário Escola para a realização deste projeto. Todos os animais eram saudáveis, com exames ecodopplercardiográficos normais, funções hepática e renal, urina tipo I e hemograma normais, sorologia para dirofilariose (Snap®3DX Idexx) negativa e pressão arterial

sistólica, radiografia torácica e eletrocardiograma sem alterações.

O exame ecocardiográfico foi realizado com os animais em decúbito lateral direito. As imagens em modo-M da aorta e do átrio esquerdo foram obtidas conforme as recomendações do *Echocardiography Commitee of the Specialty of Cardiology - American College of Veterinary Internal Medicine* (Thomas *et al.*, 1993) *e American Society of Echocardiography* (ASE), com as adaptações sugeridas por Boon (1998) (Fig. 1).

No modo bidimensional, a aorta e o átrio esquerdo foram mensurados por meio de corte transverso paraesternal direito na base do coração e na valva aórtica, onde as comissuras das cúspides valvares foram visibilizadas em diástole, respectivamente, da seguinte maneira: o diâmetro interno da aorta, em seu corte transverso, foi mensurado por meio de uma linha que se iniciou entre a comissura da cúspide valvar aórtica não coronariana e da cúspide valvar aórtica coronariana direita (A) até o limite interno da parede aórtica (B), após o fechamento valvar (início da diástole ventricular). Foi então mensurado o diâmetro interno transverso do átrio esquerdo por meio de uma linha que se estendia da comissura entre as cúspides aórticas valvares não coronariana e coronariana esquerda (C) (este ponto de aferição é facilmente definido por discreto aumento da ecogenicidade onde as três estruturas se encontram) até a margem interna da parede do átrio esquerdo, ao nível da veia pulmonar em sua porção dorsal (D). Todas as mensurações foram feitas colocando-se o caliper o mais próximo possível da interface sangue-tecido das cavidades e no início da diástole ventricular, guiado pelo eletrocardiograma (Fig. 2).

Com a finalidade de minimizar a influência dos movimentos respiratórios e de variações entre cada ciclo cardíaco, como já citado para o método do modo-M, foram obtidas três medidas da aorta e do átrio esquerdo provenientes de três batimentos, não necessariamente consecutivos, e evitando arritmia sinusal (Fox *et al.*, 1999; Rishniw e Erb, 2000; Hansson *et al.*, 2002; Oyama, 2004). Assim como realizado para o modo-M, a partir da medida do átrio esquerdo e da aorta no modo bidimensional, obteve-se um índice por meio da divisão da dimensão do átrio esquerdo pela aorta (AEB:AOB).

O teste de normalidade de Kolmogorov – Smirnov foi usado para testar a hipótese de normalidade das

variáveis quantitativas; como as amostras aqui trabalhadas foram provenientes de uma população cuja distribuição foi normal, utilizou-se o teste t-pareado para a comparação de médias das amostras. O coeficiente de correlação de Spearman foi usado para medir o grau de associação entre duas variáveis quantitativas. Também foi calculado um teste de significância.

Foram considerados estatisticamente significantes os resultados cujos níveis descritivos (P-valor) foram inferiores a 0,05. Quanto aos coeficientes de correlação, foi adotado o seguinte critério: menor do que 0,4 (correlação baixa), entre 0,4 e 0,7 (correlação moderada), entre 0,7 e 0,9 (correlação alta) e maior do que 0,9 (correlação forte). Os processamentos foram realizados por meio do programa MSOffice Excel versão 2000 para a elaboração das tabelas, SPSS for Windows versão 12.0 para a execução dos cálculos estatísticos e MS Office Word versão 2000.

## RESULTADOS

Do total de 40 animais incluídos no estudo, 14 (35%) eram machos e 26 (65%) fêmeas, sendo 12 (30%) machos inteiros, nove (22,5%) fêmeas inteiras, dois (5%) machos castrados e 17 (42,5%) fêmeas castradas. Quinze (37,5%) animais eram sem raça definida, e os 25 (62,5%) restantes com definição racial. O peso variou de 3,2 a 38,3kg, e a superfície corpórea de 0,22 a 1,14m<sup>2</sup>. Na Tab. 1 mostram-se a média, o desvio- padrão, a mediana, o erro-padrão, os valores mínimo e máximo, a variância e o intervalo de confiança (IC 95%) da média das variáveis quantitativas estudadas. Na Tab. 2 observa-se que há diferença significante (P<0,001), por meio do teste t-pareado, entre átrio esquerdo e aorta nos dois métodos e entre seus respectivos índices. Nas Fig. 3 e 4 mostram-se, respectivamente, o átrio esquerdo nos dois modos comparados ao peso e à superfície corpórea, segundo o coeficiente de Spearman. Há correlação positiva alta entre o peso e o AEB (P<0,001), coeficiente de correlação (0,894), e também entre o peso e o AEM (P<0,001), coeficiente de correlação (0,882). Comparando-se os índices, nos dois métodos, com o peso e a superfície corpórea, não se observou correlação significante (P>0,05 e coeficiente de correlação<0,4). Sendo assim, podese dizer que estes índices são independentes do peso ou da superfície corpórea.

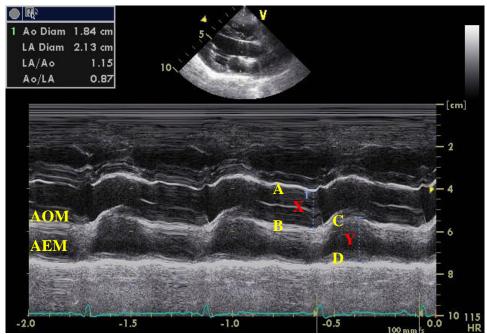



Figura 1. Cão. Representação esquemática dos pontos de referência utilizados no Modo-M (AOM: aorta no modo-M; AEM: átrio esquerdo no modo-M; linha X: distância entre A-B (AOM); linha Y: distância entre C-D (AEM); pontos de referência: A,B,C,D).

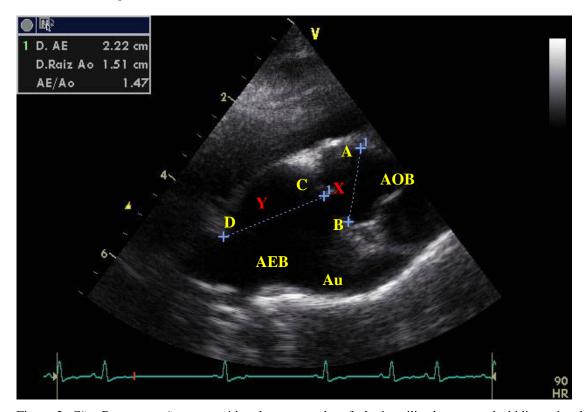



Figura 2. Cão. Representação esquemática dos pontos de referência utilizados no modo bidimensional (AOB: aorta modo-B; AEB: átrio esquerdo modo-B; Au: aurícula; linha X: distância entre A-B (AOB); linha Y: distância entre C-D (AEB); pontos de referência: A,B,C,D).

Tabela 1. Estatísticas descritivas das variáveis quantitativas AOM, AOB, AEM, AEB, AEM:AOM e AEB:AOB de 40 cães

| Variável | Média | IC 95% inferior | IC 95% superior | Variância | Mediana | Desvio-<br>padrão | Mínimo | Máximo | Erro-<br>padrão |
|----------|-------|-----------------|-----------------|-----------|---------|-------------------|--------|--------|-----------------|
| AOM      | 2,023 | 1,905           | 2,140           | 0,132     | 2,030   | 0,363             | 1,12   | 2,74   | 0,058           |
| AOB      | 1,852 | 1,753           | 1,991           | 0,135     | 1,910   | 0,366             | 1,04   | 2,80   | 0,058           |
| AEM      | 2,165 | 2,030           | 2,300           | 0,173     | 2,190   | 0,416             | 1,34   | 2,93   | 0,066           |
| AEB      | 2,572 | 2,411           | 2,732           | 0,245     | 2,690   | 0,495             | 1,46   | 3,4    | 0,079           |
| AEM/AOM  | 1,067 | 1,046           | 1,088           | 0,004     | 1,060   | 0,064             | 0,9    | 1,2    | 0,010           |
| AEB/AOB  | 1,379 | 1,337           | 1,422           | 0,017     | 1,390   | 0,130             | 1,1    | 1,7    | 0,020           |

AOM: diâmetro aórtico no modo-M; AOB: diâmetro aórtico no modo bidimensional; AEM: diâmetro do átrio esquerdo no modo-M; AEB: diâmetro do átrio esquerdo no modo bidimensional; AEM:AOM: índice do átrio esquerdo e da aorta no modo-M; AEB:AOB: índice do átrio esquerdo e da aorta no modo bidimensional.

Tabela 2. Comparação entre aorta no modo M (AOM) e aorta no modo bidimensional (AOB), átrio esquerdo no modo-M (AEM) e átrio esquerdo no modo bidimensional (AEB), índices do átrio esquerdo e da aorta nos modos-M e bidimensional (AEM:AOM e AEB:AOB, respectivamente) de 40 cães

|                   |        |                   |                 | 1                  |                   |         |
|-------------------|--------|-------------------|-----------------|--------------------|-------------------|---------|
|                   | Média  | Desvio-<br>padrão | Erro-<br>padrão | 95% IC<br>Inferior | 95%IC<br>Superior | P-valor |
| AOM - AOB         | 0,147  | 0,173             | 0,027           | 0,092              | 0,202             | <0,001  |
| AEM - AEB         | -0,400 | 0,295             | 0,046           | -0,495             | -0,305            | <0,001  |
| AEM:AOM – AEB:AOB | -0,308 | 0,136             | 0,021           | -0,351             | -0,264            | <0,001  |

IC: intervalo de confiança.

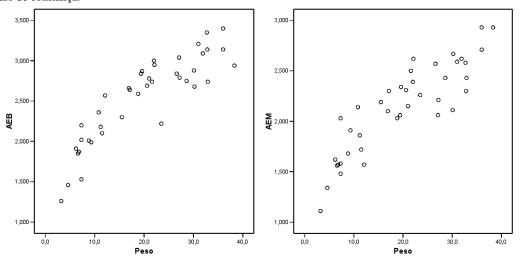



Figure 3. Scatter plots mostrando a variável átrio esquerdo nos modos M e bidimensional versus peso, em cão.

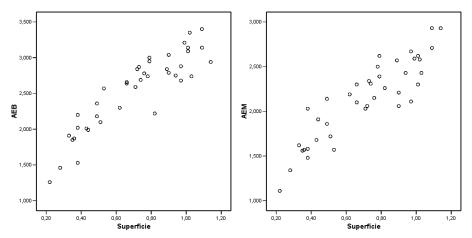



Figure 4. *Scatter plots* mostrando a variável átrio esquerdo nos modos M e bidimensional *versus* superfície corpórea, em cão.

# DISCUSSÃO

Neste estudo, optou-se por um dos métodos ecocardiográficos bidimensionais para a mensuração do átrio esquerdo em cães saudáveis e procurou-se escolher a faixa de peso que mais comumente foi atendida, evitando variações extremas de peso, descartando animais obesos e utilizando somente animais adultos.

Ao se comparar os resultados obtidos referentes ao tamanho do átrio esquerdo, por ambas as técnicas ecocardiográficas, AEM e AEB apresentaram correlação positiva alta com o peso e com a superfície de área corpórea, assim como em O'Grady (1986); Boon (1998) e Rishniw e Erb (2000). Rishniw e Erb (2000) realizaram mensurações de aorta e átrio esquerdo em modo bidimensional (corte transverso), de forma análoga ao estudo em questão, e observaram um coeficiente de correlação alto entre o diâmetro do átrio esquerdo e o peso, semelhantemente ao que ocorreu neste projeto. Avaliando AEM e AEB, em animais da raça Cavalier King Charles Spaniel, Hansson et al. (2002) encontraram correlação fracamente positiva entre AEM e AEB com peso e superfície corpórea, ao contrário do que ocorreu com a população de cães de raças ora avaliados.

Não se observou correlação entre os índices AEM:AOM e AEB:AOB e peso e superfície de área corpórea, o que mostra que são índices independentes de peso (Boon *et al.*, 1983; Boon, 1998; Rishniw e Erb, 2000). Esses índices podem, portanto, ser aplicados para todos os

cães, de qualquer porte, facilitando, assim, a memorização de um único valor de normalidade para qualquer animal. Poucas cardiopatias afetam o diâmetro da aorta, nos pontos onde são realizadas as medidas; além disso, o diâmetro da aorta tende a mudar minimamente se comparado às variações do peso corporal que acontecem com o decorrer do tempo em animais adultos (Brown *et al.*, 1974; Boon, 1998; Rishniw e Erb, 2000).

Comparando-se a média dos diâmetros da aorta no modo-M (AOM) com a média do diâmetro da aorta no modo bidimensional (AOB), observou-se diferença entre essas variáveis (P<0,001). O mesmo ocorreu com relação à média dos diâmetros do átrio esquerdo no modo-M e no modo bidimensional e com relação à média dos índices AEM:AOM e AEB:AOB.

A média da AOM, 2,023; IC= 1,905-2,140, foi maior que a média da AOB, 1,872; IC= 1,753-1,991, provavelmente pelo fato de as aferições terem sido realizadas em momentos diferentes do ciclo cardíaco. No modo-M, a medida é realizada no final da diástole, enquanto no modo bidimensional a medida é realizada no início da diástole, resultado diferente do observado por Hansson et al. (2002) (média da AOM= 1,60 e média da AOB= 1,84), em que a medida da aorta, no modo bidimensional, foi realizada paralelamente ao diâmetro do átrio esquerdo, ao invés de ao longo das cúspides não coronariana e coronariana direita, e a imagem utilizada, para a obtenção da medida da aorta no modo-M, foi por meio do corte transverso e não por meio do corte

longitudinal, o que pode ter interferido no resultado, além de ter sido estudada somente uma raça.

A média do AEM (2,165; IC= 2,030- 2,300) foi menor do que a média do AEB (2,572; IC= 2,411- 2,732), confirmando a hipótese de que a mensuração do AE no modo bidimensional é mais acurada. Segundo Kienle e Thomas (2002), Kittleson e Kienle (1998) e Fox *et al.* (1999), no modo-M, o cursor passa pela aurícula ou porção mais cranial do átrio esquerdo e não pelo corpo do átrio, ou seja, pelo local de maior diâmetro dele. Isso se deve à posição do coração do cão, diferentemente do que se observa nos seres humanos e nos gatos (Abbott e MacLean, 2006).

Dessa mesma forma, o índice AEB:AOB (média=1,379 e IC= 1,337-1,422) foi superior ao índice AEM:AOM (média= 1,067 e IC= 1,046-1,088), corroborando com os valores obtidos por outros autores (Boon et al., 1983; Lombard, 1984: Boon, 1998: Rishniw e Erb, 2000: Kienle e Thomas, 2002). Já Häagströn et al. (1994) e Hansson et al. (2002) não observaram esta diferença entre os valores dos índices obtidos no modo-M e no modo bidimensional em cães normais de uma mesma raça. O valor obtido para o índice AE:AO (1,03± 0,09), no modo bidimensional, segundo Hansson et al. (2002), foi menor que o desta pesquisa (1,379±0,130), provavelmente porque esses autores estudaram animais da mesma raça, o plano de imagem utilizado foi um pouco mais oblíquo, e os pontos de aferição diferentes. Os mesmos autores avaliaram a relação AE:AO por ambos os métodos, em animais com doença degenerativa da valva mitral, nos quais o índice AE:AO (1,61±0,57), no modo bidimensional, foi maior do que no modo-M, principalmente nos animais com índice médio de 2,0-2,5. Estes resultados sugerem que o modo bidimensional seja mais sensível na detecção do aumento atrial esquerdo. secundário à doença cardíaca esquerda (a exemplo da degeneração da valva mitral), e, portanto, o melhor método, uma vez que o tamanho do átrio esquerdo é de especial interesse para a avaliação da gravidade da doença (Pape et al., 1991) e um dos parâmetros relevantes para a instituição da terapia.

É importante salientar que os valores das variáveis obtidos, no presente estudo, estão relacionados aos pontos e ao momento do ciclo cardíaco preestabelecidos e ao plano de imagem utilizado (corte transverso paraesternal direito, ao nível da base do coração). Os ecocardiografistas não devem utilizar estes valores como referência para medidas realizadas em pontos, planos e métodos diferentes dos que aqui foram mencionados. A média obtida para o índice AE:AO pelo método bidimensional foi igual à obtida por Rishniw e Erb (2002), que utilizaram o mesmo corte (AEB:AOB= 1,3), provavelmente porque os pontos de aferição foram muito semelhantes, embora o valor máximo obtido tenha sido pouco maior (AEB:AOB= 1,7). Métodos diferentes não podem ser comparados entre si, pois podem gerar diagnósticos equivocados de aumento atrial esquerdo, a exemplo do que ocorreria ao se compararem os valores da relação AEM:AOM, citados em literatura, que é menor do que 1,3 (Bonagura, 1983: Boon et al., 1983: Lombard, 1984: Kienle e Thomas, 2002), com os valores de AEB:AOB obtidos neste estudo (valor máximo = 1,7 e média= 1,379).

No modo bidimensional, optou-se por realizar as aferições no plano e nos pontos previamente citados por entender que estes seriam o plano em que o átrio esquerdo é melhor visibilizado (melhor janela acústica e maior amplitude do mesmo) (O'Grady et al., 1986; Kittleson e Kienle, 1998; Fox et al., 1999; Kienle e Thomas, 2002; Oyama, 2004) e os pontos de maior praticidade na rotina do exame ecocardiográfico. Tomando-se a veia pulmonar como ponto de delimitação do átrio esquerdo em sua porção dorsal, não seria necessária a criação de uma linha imaginária na porção caudolateral, onde esta veia adentra o átrio esquerdo, diminuindo, assim, o risco de uma aferição errônea. Hansson et al. (2002) compararam os dois métodos. porém utilizando o mesmo corte para tal (transverso paraesternal direito), diferentemente do que foi feito neste trabalho. Na rotina do serviço de cardiologia do Hospital Veterinário Escola, utiliza-se o corte longitudinal paraesternal para a realização do modo-M da aorta e do átrio esquerdo e por isso a eleição dele para a comparação.

## **CONCLUSÕES**

Avaliando-se os resultados obtidos, por meio da metodologia descrita, concluiu-se que, no modo bidimensional, o AE e o índice AE:AO foram superiores aos do modo-M, confirmando que o modo bidimensional é mais fidedigno do que o modo-M e que em ambos os métodos os índices não têm correlação com peso ou superfície corpórea. O índice médio obtido para a relação AEB:AOB foi de 1,379; com intervalo de confiança de 1,337 a 1,422.

## REFERÊNCIAS

- ABBOTT, J.A.; MacLEAN, H.N. Two-dimensional echocardiographic assessment of the feline left atrium. *J. Vet. Inter. Med.*, v.20, p.111-119, 2006.
- BOON, J.A.; WINGFIELD, W.E.; MILLER, C.W. Echocardiography indices in the normal dog. *Vet. Radiol.*, v.24, p.214-221, 1983.
- BOON, J.A. *Manual of Veterinary Echocardiography*. 1.ed. Baltimore: Williams & Wilkins, 1998. p.35-260.
- BONAGURA, J.D. M-mode echocardiography: Basic principles. *Vet. Cli. North Amer.: Small Anim. Pract.*, v.13, p.299-319, 1983.
- BONAGURA, J.D.; MILLER, W.M. Doppler echocardiography II: Color Doppler Imaging. *Vet. Cli. North Amer.: Small Anim. Pract.*, v.28, p.1361-1389, 1998.
- BONAGURA, J.D.; MILLER, W.M.; DARKE, P.G.G. Doppler echocardiography I: Pulsed-wave and continuous-wave examinations. *Vet. Cli. North Amer.: Small Anim. Pract.*, v.28, p.1325-1359, 1998.
- BROWN, O.R.; HARRISON, D.C.; POPP, R.L. An improved method for echographic detection of left atrial enlargement. *Circulation*, v.50, 1974.
- FOX, P.R.; SISSON, D.; MOÏSE, S. *Textbook of Canine and Feline Cardiology:* Principles and Clinical Practice. 2.ed. Philadelphia: W.B. Saunders Company, 1999. 955 p.
- HAAGSTROM, J.; HANSSON, K.; KALBERG, B.E. *et al.* Plasma concentrations of atrial natriuretic peptide in relation to severity of mitral regurgitation in Cavalier King Charles Spaniels. *Am. J. Vet. Res.*, v.55, p.698-703, 1994.
- HANSSON, K.; HAGGSTROM, J.; KVART, C. *et al.* Left atrial to root indices using two-dimensional and M-mode echocardiography in Cavalier King Charles spaniels with and without left atrial enlargement. *Vet. Radiol. Ultras.*, v.43, p.568-575, 2002.

- KIENLE R.D.; THOMAS W.P. Echocardiography. In: NYLAND, T.G.; MATTOON, J.S. (Ed.). Small Animal Diagnostic Ultrasound. 2.ed. Philadelphia: W.B. Saunders Company, 2002. p.198-256
- KIHARA, Y.; SASAYAMA, S.; MIYAZAKI, S. *et al.* Role of the left atrium in adaptation of the heart to chronic mitral regurgitation in conscious dogs. *Circulation Res.*, v.62, p.543-553, 1988.
- KITTLESON, M.D.; KIENLE, R.D. Small animal cardiovascular medicine. St Louis: Mosby, 1998. p.95-117.
- LOMBARD, C.W. Normal values of the canine M-mode echocardiogram. *Am. J. Vet. Res.*, v.45, p.2015-2018, 1984.
- O'GRADY, M.R.; BONAGURA, J.D.; POWERS, J.D.; HERRING, D.S. Quantitative cross-sectional echocardiography in the normal dog. *Vet. Radiol.*, v.27, p.34-49, 1986.
- OYAMA, M.A. Advances in Echocardiography. *Vet. Clin. North Am.: Small Anim. Pract.*, v.34, p.1084-1104, 2004.
- OYAMA, M.A.; SISSON, D.D. Assessment of cardiac chamber size using anatomic M-mode. *Vet. Radiol. Ultras.*, v.46, p.331-336, 2005.
- PAPE, L.A.; PRICE, J.M.; ALPERT, J.S. *et al.* Relation of left atrial size to pulmonary capillary wedge pressure in severe mitral regurgitation. *Cardiology*, v.78, p.297-303, 1991.
- RISHNIW, M.; ERB, H.N. Evaluation of four twodimensional echocardiography methods of assessing left atrial size in dogs. *J. Vet. Inter. Med.*, v.14, p.429-435, 2000.
- SAHN, D.J.; DEMARIA, A.; KISSLO, J.; WEYMAN, A. Recommendations regarding quantitation in M-mode echocardiography: Results of a survey of echocardiographic measurements. *Circulation*, v.58, p.1072-1082, 1978.
- THOMAS, W.P.; GABER, C.E.; JACOBS, G.J. *et al.* Recomendations for standards in transthoracic two-dimensional echocardiography in dogs and cats. Echocardiography Committee of the Specialty of cardiology, American College of Veterinary Internal Medicine. *J. Vet. Inter. Med.*, v.7, p.247-252, 1993.