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Biochemical and physiological processes are involved in 
the maintenance of a homeostasis state aiming at the survival 
of the human body. The alterations in this state of equilibrium 
are perceived and several systems are activated, including the 
endocrine system, aiming at reestablishing the homeostasis.

Among these systems, one of the most important is 
nutrition, for cell functionality and growth.

After a meal, there is a nutrient storage for the future needs 
of the body. The physiological response to fasting and feeding 
is a complex process and alterations in this process can lead to 
several illnesses; from starvation to obesity, from hypoglycemia 
to diabetes mellitus type 2. There can also be an alteration in 
the processes of growth with deficiency or exacerbation of the 
proliferative processes, such as in arteriosclerosis.

Type 2 diabetes is clearly associated to the presence 
of obesity and it is acknowledged that it results from a 
combination of the beta cell secretory defect and failure in 
the peripheral action of insulin1.

The intensity of the disease, as well as its potential in 
causing chronic complications is frequently attributed to 
the presence of fasting hyperglycemia, which reflects the 
alteration in the process of homeostasis and fundamentally, 
in the elevated levels of glycated hemoglobin (HbA1c), being 
the main parameters for its treatment2,3. The identification 
of the association between the postprandial state and 
cardiovascular disease 4 in patients with type 2 diabetes 
brought the development of new therapeutic options aiming 
at correcting the postprandial metabolic abnormalities, among 
which are the alpha-glucosidase inhibitors, fast-acting insulin 
secretagogues, fast acting insulin analogs and others.

The present review aims at the detailed discussion of the 
importance of the postprandial state in patients with type 2 
diabetes, from the progression of the beta cell dysfunction 
associated to insulin action resistance to the development of 
the process of atherogenesis. Dietary therapeutic alternatives 
will be discussed as well as behavior (physical exercise) and 
pharmacological ones. Lastly, the possible perspectives for 
future therapies will be discussed.

Regulation of normal glycemia
Glycemia regulation depends basically on the action of 

two hormones produced in the islets of Langerhans in the 

pancreas: insulin and glucagon, which promote the minute-
by-minute adjustment of glucose homeostasis. In healthy 
individuals, the glucagon action is to stimulate the production 
of glucose by the liver and the insulin action is to block this 
production and increase glucose uptake by the peripheral 
insulin-sensitive tissues, such as muscle and fatty tissue. In a 
normal fasting state, small increments in glycemia lead to the 
suppression of glucagon production and increase of insulin 
production, whereas hypoglycemia lead to an increase in 
glucagonemia and decrease in insulinemia. The integrity of this 
“glucostate” is crucial for metabolic health. In the fasting and 
postprandial states, the glucose consumption is represented 
by the central nervous system (CNS - 50%), muscle (25%) and 
splenic tissues (25%)5,6.

The state of normal fasting is characterized by more 
elevated levels of glucagon and low levels of insulin, together 
with physiological levels of gastrointestinal hormones such as 
the gastric inhibitory polypeptide (GIP) and the glucagon-like 
peptide (GLP-1). The result of this equilibrium is an increased 
production of glucose by the liver and by the kidney, reduction 
in the peripheral glucose uptake, and increase in muscular 
proteolysis and adipocyte lipolysis. These synchronized 
changes maintain glycemia between 70 and 100 mg/dL, free 
fatty acids (the product of lipolysis) between 300 and 400 
µmol/L and triglycerides below 125 mg/dL. Individuals with 
type 2 diabetes present a reduction in insulin action and 
production, resulting in an increase of glycemia, free fatty 
acids, triglycerides and amino acids in the fasting state6,7.

There is a normal physiological increase in glycemia after 
a meal, with an increment of up to 50 mg/dL, which does not 
surpass 140 mg/dL. This increase depends on the amount of 
glucose consumed and the endogenous glucose production. 
At this moment, the pancreas produces a higher amount 
of insulin, which suppresses the glucagon production and 
consequently reduces the glucose production by the liver. On 
the other hand, there is an increase in the glucose uptake by 
muscle and fatty tissues. This process depends on an effective 
insulin action in its cell receptors, and this metabolic response 
also causes lipid and amino acid levels to return to the basal 
state. Gastrointestinal hormones such as GIP, GLP-1 and 
PYY-3-36 (peripheral hormone peptide YY) participate in this 
process, modulating appetite, gastric emptying, glucagon and 
insulin production and, eventually, even directly influencing 
glucose uptake by tissues8.
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Postprandial hyperglycemia is the result of an excessive 
glucose production associated to its reduced peripheral 
uptake. When the glucose uptake exceeds its production, 
the glycemia returns to normal levels. In individuals with 
carbohydrate intolerance and in those with type 2 diabetes, 
the postprandial glycemic excursion is higher and more 
prolonged, submitting these individuals to a long-term 
postprandial state9,10. Thus, the postprandial hyperglycemia 
and hypertriglyceridemia are the earlier alterations seen in 
patients who will develop type 2 diabetes.

Physiopathological mechanisms of 
postprandial hyperglycemia

As mentioned before, the normal glycemic excursion 
depends on a complex pancreatic and gastrointestinal 
hormone action. Glucose intolerance depends on the 
presence of defects in insulin production (reduction of the 
first phase of insulin secretion) and action (insulin resistance). 
It is known that the relative importance of insulin resistance 
in diabetic patients is more relevant due to the presence of 
obesity and centripetal fat distribution, which impair insulin 
action. Nonetheless, in studies that adjusted insulin secretion 
and action by the degree and distribution of adipose tissue, the 
deficient insulin secretion showed to be more important11,12. 
Considering that, the diabetes treatment is usually more 
effective when the two physiopathological mechanisms are 
treated together.

Hyperglycemia occurs due to a failure of the beta cell to 
compensate for insulin resistance, with a deficient secretory 
response to the glycemic stimulation. This picture occurs 
in the beginning of the process as well as in the possible 
beta cell exhaustion mechanism, which is inherent to the 
disease evolution. However, animal models with knockout 
of the insulin receptor in pancreatic beta cells, called βirko, 
i.e., where there is insulin action resistance in the cell that 
produces it, showed loss of the first phase of insulin secretion 
and its initial clinical finding is postprandial hyperglycemia. 
Thus, insulin resistance demands a higher insulin production, 
although it will eventually result in the decrease of its 
production as in the development of type 2 diabetes.

Additionally, chronic postprandial hyperglycemia can lead 
to a state of glucotoxicity, characterized by the progressive 
reduction of beta cell secretion or the progressive loss of 
the glycostatic function of the pancreas, i.e., a vicious cycle 
with a progressive worsening of the hyperglycemic state. The 
toxic mechanisms of hyperglycemia on the beta cell occur 
by the reduction of the insulin gene expression, decrease 
of proinsulin processing and deposition amyloid material 
with an increase of the apoptosis process (cell death). These 
mechanisms are exacerbated in the concomitance of an 
increase in postprandial lipemia (triglycerides and free fat 
acids) through a mechanism known as lipotoxicity13. The 
known process of increased glycation in diabetes, in which 
the glucose reacts in a nonenzymatic way with several proteins 
forming initial glycation products, called Amadori products, 
commonly assessed by the presence of increased levels of 
glycated hemoglobin (A1C), also occurs inside the beta cell 
in the insulin granules, leading to the secretion of glycated 
insulin, which presents a reduced biological activity.

Thus, the glucotoxicity in the beta cell must also contribute 
to insulin action resistance14.

After a meal, some hormones are produced in the 
gastrointestinal tract and stimulate insulin secretion, being 
known as incretins. There are several postprandial hormones; 
the most important ones are the glucose-dependent 
insulinotropic peptides, i.e., the inhibitory gastric peptide (GIP) 
and the glucagon-like peptide-1 (GLP-1). In fact, there is an 
increased insulinic response to oral glucose when compared 
to the intravenous glucose infusion and this phenomenon is 
known as the incretin effect, which contributes with 30 to 
60% of the postprandial insulin secretion. In type 2 diabetic 
patients, there is a slight reduction of the postprandial levels of 
GIP and an increased reduction of GLP-1 levels, contributing 
for the insulin secretion deficiency in these individuals15.

The synchronization between food intake and insulin 
secretion is a precise and intriguing mechanism. This 
synchronism depends on a cephalic phase of insulin secretion 
that precedes the food intake, being small in absolute terms, 
but directly related to the total amount of insulin secreted 
right after the beginning of food intake16. In response to an 
intravenous or oral glucose overload, there is, therefore, a 
biphasic insulin secretion, characterized by an initial peak 
between 5 and 7 minutes. This first secretion phase lasts up to 
10 or 15 minutes and is followed by a prolonged secretion at 
lower levels, usually for up to 4 hours, until the glucose levels 
return to normal basal levels. In absolute terms, approximately 
1% of the beta cell content is secreted in the first phase and 
10% more are secreted in the second phase.

After the oral glucose overload, there is an inverse relation 
between the 30-min insulin concentration (a marker of the 
first phase of the secretion) and the 2-hour glycemia17. On the 
other hand, there is a direct relation between the insulinemia 
level and the 2-hour glycemia, and the loss of the first phase 
of insulin secretion can lead to hyperglycemia and late 
hyperinsulinemia. Without the initial insulin peak, there is 
no suppression of glucagon production and, consequently, a 
blockage of the hepatic glucose production18. The suppression 
of the hepatic production in diabetic individuals is 50% lower 
when compared to normal individuals. The effects of the loss 
of the first phase are summarized in Figure 119,20.

Patients with type 2 diabetes, at the time of the diagnosis, 
demonstrate a virtually lost first phase of secretion, despite 
presenting an increase in the second phase and fasting 
hyperinsulinemia. A prospective study with the Pima Indians 
of Arizona, who evolved from normality to diabetes in a 
period of 5 years of follow-up, showed that the progression 
from normal to glucose intolerance, and subsequently, to 
diabetes, was associated to weight gain, to the worsening of 
insulin sensitivity and the deterioration of the first phase of 
insulin secretion21. In summary, the loss of the first phase is 
a crucial event in the secretory defect related to the genesis 
of type 2 diabetes, being associated with glucose intolerance 
and postprandial hyperglycemia20.

Postprandial hyperglycemia and 
cardiovascular morbi-mortality

The large-scale occurrence of cardiovascular disease 
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glucose tolerance test (OGTT). Although the OGTT does not 
represent a stimulus identical to a complex meal, with fibers 
and lipids, studies have shown a good correlation between 
the glycemic peaks observed after the test and after a complex 
meal, being the OGTT then considered a surrogate marker 
for postprandial glycemia.

Studies such as the Hoorn study32, the Honolulu 
Heart Study33 and the DECODE (Diabetes Epidemiology: 
Collaborative Analysis of Diagnostic Criteria in Europe) study34 
showed that the hyperglycemia 2 hrs after the glucose overload 
was an important predictor of cardiovascular risk, which 
has also been confirmed by Coutinho and cols. in a meta-
analysis involving more than 90,000 individuals35. Similarly, 
prospective cohort studies such as the Whitehall Study, the 
Paris Prospective Study and the Helsinki policemen study 
showed that the risk of CV mortality had a 2-fold increase in 
those with a hyperglycemic response to the stimulation test 
when compared to those with normal response to the glucose 
overload36-38. Thus, prospective clinical assays with correction 
of postprandial hyperglycemia will be able to characterize the 
actual role of this control in the prevention of cardiovascular 
events. Notably, the presence of multiple associated risk factors 
in diabetic patients presupposes an intensive therapeutic 
intervention in these patients39.

The hypothesis of atherogenesis as a postprandial 
phenomenon was raised as early as the 70’s40.

(CVD) in patients with type 2 diabetes has been recognized 
for some time22,23. Diabetic patients present a 2 to 4-fold 
increased risk of CVD, when compared to non-diabetic 
individuals. The mortality risk due to CVD is 2 to 10-fold 
increased in diabetic patients. A case-control study, which 
assessed risk factors for acute myocardial infarction (AMI) 
in the metropolitan region of the city of São Paulo, Brazil, 
showed that the presence of diabetes antecedents had an 
independent association, which was not observed in relation 
to the glycemic measurement alone, evaluated in the study. It 
is noteworthy that, although the study was not explicit about 
it, one can assume that the measurement was carried out in 
the fasting state, as the same blood sample was used for the 
measurement of lipid parameters24. Other studies carried out 
with the Brazilian population showed conflicting results25,26. 
CVD is the main cause of mortality among diabetic patients, 
being responsible for up to 50% of the deaths27-29. Despite 
the fact that hyperglycemia was related to a higher risk of 
cardiovascular events in the United Kingdom Prospective 
Diabetes Study (UKPDS), the treatment of hyperglycemia 
was not able to significantly reduce the risk of cardiovascular 
events in this important study30.

Observational epidemiological studies, however, have 
shown that postprandial hyperglycemia is an independent 
risk factor for CVD31. The majority of these studies were 
carried out through the measurement of glycemia after an oral 

Fig. 1 - Effects of first phase failure: Sustained hepatic glucose output, reduced peripheral glucose uptake, resulting in postprandial hyperglycemic.
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Effect of the postprandial state on lipids
(Postprandial lipemia)

The proposal of the characterization of atherogenesis as a 
postprandial phenomenon more than 20 years ago led to an 
increasing interest in the postprandial lipid metabolism. The 
progression of atherosclerosis is associated to postprandial 
hyperlipidemia in epidemiological and case-control 
studies41,42. This process depends on the direct deposition of 
lipoprotein residues on the arterial wall43, or, indirectly, due 
to its contribution in the generation of small and dense LDL 
particles and HDL3 cholesterol44. Thus, the interventions in 
postprandial dyslipidemia can be beneficial.

Postprandial hyperlipemia is a common atherogenic 
situation in patients with type 2 diabetes45,46. In normal 
conditions, the postprandial levels of triglycerides and the 
conversion of VLDL particles into LDL are controlled by a 
dynamic metabolic process that involves the lipoprotein lipase 
(LPL) and hepatic lipase (HPL) enzymes47(. LPL is responsible 
for the conversion of lipoproteins rich in triglycerides into free 
fatty acids, allowing the uptake of the latter by the peripheral 
tissues. The HPL removes the triglycerides and phospholipids 
from the chylomicron residues and VLDL, increasing the 
uptake of chylomicrons by the liver46. In the normal lipoprotein 
transportation, there is the maintenance of low triglyceride and 
VLDL cholesterol levels, with predominance of LDL and HDL 
lipoproteins. After food intake, there is an expected increase in 
the levels of lipoproteins and increased lipase action, resulting 
in a return to basal lipid levels 4 to 6 hours later. In patients 
with type 2 diabetes, the presence of insulin resistance is 
associated to LPL reduction with an increased production of 
VLDL. Elevated levels of VLDL compete with the chylomicrons 
for LPL action, resulting in marked postprandial hyperlipidemia 
in these patients. The basal levels of triglycerides can be 
predictive of the intensity of the postprandial lipid excursion48. 
The association of atherogenicity with the elevated levels of 
lipoproteins rich in triglycerides in the postprandial state has 
been demonstrated in several studies49,50. The main lipoprotein 
abnormalities observed in the postprandial state in diabetes51 
are shown in Figure 2.

Some authors mention the presence of insulin resistance, 
abdominal obesity and postprandial dyslipidemia as 
interrelated factors for the risk of coronary disease, calling this 
condition “the deadly triad”52.

The postprandial state and the non-tradit ional 
cardiovascular risks

The mechanisms by which the postprandial increases of 
glucose and lipids are related to the increase of macrovascular 
disease will discussed in this session.

The extracellular concentrations of a nutrient can alter the 
functions of a cell, modifying the cell membrane structure 
and function from the increase of the concentration of this 
nutrient in the intracellular environment. The hyperglycemia 
exemplifies this process. When the plasma concentrations 
of glucose are high, there is an increase of nonenzymatic 
glycosilation of the cell membrane and the circulating proteins. 
The glucose-permeable cells (nerve, retina, and glomerular 
cells) activate protein kinase C (PKC) through the hyperglycemia 
effect, causing cellular stress. The mechanisms proposed 
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for tissue injury caused by hyperglycemia include: PKC 
activation, activation of the polyol pathway that correspond 
to the intracellular effects, in addition to the increase of the 
formation of advanced glycosilated end-products (AGEs), 
which correspond to the extracellular effects of hyperglycemia. 
The increased oxidative stress in the postprandial state is 
represented by the increase of glucose-oxidation and lipid-
oxidation products in plasma, the AGEs, which are highly 
reactive. The intracellular oxidative stress leads to an activation 
of redox-sensitive transcription, nuclear factor κB (NFκB) and 
expression of the tissue growth factors53.

Oxidative stress of the arterial wall and 
postprandial endothelial dysfunction

Several phenomena that contribute to arterial wall stress 
occur by influence of postprandial hyperglycemia, culminating 
in an increase of endothelial dysfunction. The oxidative stress 
assessed by the serum increase of nitrotyrosine, in association 
to the presence of AGEs, activation of polyol pathway and PKC 
increase, leads to arterial wall injury53,54.

The endothelial function is essential for the elasticity of 
the vessel wall and its dysfunction contributes to the process 
of atherosclerosis. The preserved endothelium is responsible 
for the regulation of muscle tonus through the production 
of nitric oxide (NO), which promotes vasodilation, and of 
endothelin, which is vasoconstrictor. Other functions refer to 
the control of the protein matrix synthesis, cell migration and 
growth stimulation, regulation of thrombogenesis (modulation 
of PAI-1 and platelet aggregation) and the inflammatory 
response through the production of cytokines and adhesion 
molecules. The endothelium-dependent NO is synthesized 
from the amino acid L-arginine through the NOS (nitric oxide 
synthase) enzyme, and the availability of this amino acid can 
be a limiting factor for the availability of endothelial NO.

The endothelial function is altered in patients with type 2 
diabetes and is manifested by the PKC activation, increased 
presence of adhesion molecules, increase of endothelin 
and type IV collagen levels, in addition to the characteristic 
reduction of endothelial NO production. In diabetic 
individuals, the vasodilating response to the stimulation is 
altered and this alteration is related to the glycemic control. 
The hyperglycemia induces endothelial dysfunction in diabetic 

Fig. 2 - Lipoprotein alterations in the postprandial period in type 2 diabetes.
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as well as non-diabetic individuals, and increase of systolic 
as well as diastolic arterial pressure, increase of cardiac 
frequency and decreased blood flow to the limbs have been 
demonstrated, suggesting vasoconstriction. These alterations 
might be related to the lower availability of NO, as they 
are reverted after L-arginine infusion55. These processes are 
altered mainly during the postprandial state, being equally 
influenced by the presence of postprandial hyperglycemia 
and hyperlipidemia56,57. Studies have shown that some of 
the effects induced by hyperglycemia were also reverted 
with the administration of antioxidants such as glutathione58, 
ascorbic acid59 and sinvastatin60, supporting the probable 
etiological role of oxidative stress in the physiopathology of 
these alterations, such as the endothelial dysfunction.

Postprandial hypercoagulability
In the postprandial state, diabetic patients exhibit a series 

of alterations that culminate with the characterization of a pro-
coagulant state. There is an increase of coagulation factors and 
serum markers of hypercoagulation and hypofibrinolysis such 
as factor VII61, prothrombin62, PAI-1, D-dimer and increase 
in platelet aggregation63. The alteration is also characterized 
by fibrinogen half-life decreas64. The result of these events is 
a prothrombotic condition in these patients, which manifests 
at a special degree in the postprandial state.

Postprandial hyperlipemia and hyperglycemia are 
also related to the increase in the levels of cell adhesion 
molecules, which regulate the adhesion of leucocytes to the 
endothelium65,66, as well as nitrotyrosine increase, a marker 
of oxidative stress.

Intravascular inflammation in the 
postprandial state

The recognition of the presence of a subclinical, chronic 
inflammatory state in obesity and type 2 diabetes has 
been increasingly accepted in the scientific community, 
being held responsible for part of the progression of the 
atherosclerotic disease in diabetes. Recent studies have shown 
that, during the postprandial period, there is an increased 
recruiting of neutrophils due to the independent influence 
of hyperlipidemia and hyperglycemia. Additionally, other 
inflammation markers such as the increased presence of 
hydroperoxides and elevated levels of interleukins (IL6 and 
IL8) are characteristic of the postprandial state67.

All these phenomena, acting dynamically and jointly in 
diabetic patients in the postprandial state probably correspond 
to the physiopathology of atherogenesis, attributed to 
postprandial hyperglycemia.

The abnormal glycemic excursions can contribute to 
oxidative stress, endothelial dysfunction, prolonged QT 
interval at the electrocardiogram56 (marker for sudden death), 
atherosclerotic plaque formation and instability, culminating 
with the process of accelerated atherogenesis associated to 
coronary artery disease responsible for the premature death 
of type 2 diabetes patients.

Thus, in addition to being a therapeutic objective of the 
glycemic control itself, the postprandial hyperglycemia can be 

considered a marker of underlying atherosclerotic processes. 
Long-term studies on the treatment of the postprandial state, 
with special focus on postprandial hyperglycemia, will better 
characterize the effect of the reduction of the cardiovascular 
risk and associated mortality.

Control of postprandial hyperglycemia
The increase in postprandial glycemia can be present even 

under conditions of normal fasting glycemia, constituting 
one of the initial stages of type 2 diabetes. This stage is 
known to contribute for the development of early micro and 
macrovascular complications, in addition to accelerating 
the process of progression to symptomatic diabetes through 
peripheral glucotoxicity and that inside the beta cell68. The 
early identification of postprandial hyperglycemia and its 
effective control constitute a potential therapeutic objective 
for the prevention of chronic diabetes complications. 
According to the most recent consensus, the postprandial 
glycemia must be kept below 140 mg/dL for the prevention of 
macrovascular complications of diabetes such as the coronary 
artery disease69,70.

A randomized prospective clinical intervention study 
was carried out aiming at comparing the treatment of 
diabetes based on the preprandial glycemic control with 
the postprandial state in women with gestational diabetes. 
De Venciana and cols. showed a reduction in the overall 
glycemic control, evaluated by the glycated hemoglobin 
(A1C), which was more intense in the postprandial control 
group when compared to the preprandial one (reduction of 
3.2 ± 2.2 % vs. 0.6 ± 1.6 %). The children born to women 
with control of the postprandial period had lower indices of 
neonatal hypoglycemia and macrosomia, as well as lower 
indices of Caesarean section indication due to cephalopelvic 
disproportion71.

The treatment focused on the reduction of postprandial 
glycemia and not on the fasting glycemia seems more effective 
in promoting a more intense reduction of the glycated 
hemoglobin levels, supporting the hypothesis of postprandial 
hyperglycemia reduction as the main objective to improve 
the overall control and possible reduction of macrovascular 
complications72. The relative contribution of the postprandial 
or fasting glycemia for the overall glycemic control seems to 
vary according to the stage of the disease, or with the degree 
of control. In patients with HbA1c levels that are close to 
the desirable ones, for instance, those in earlier stages, the 
postprandial glycemia can respond for up to 70% of the overall 
glycemic control73.

Physical exercises
The physical activity is considered one of the mainstays 

of type 2 diabetes mellitus treatment. The effect of physical 
exercise on the glycemic control is attained mainly through 
the sensitization effect of the exercises to insulin, as well as the 
glucose uptake stimulation regardless of the insulin action.

In the post-absorptive period, the moderate physical 
activity decreases glycemia and increases insulin sensitivity74. 
On the other hand, there is evidence that exercising in the 
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postprandial period is more potent in reducing glycemia after 
a meal than the effect of exercise performed in the fasting state 
on fasting glycemia75. The effect of exercising on postprandial 
glycemia is present at the moment it is being performed, but 
it does not extend until the next meal.

The beneficial effects of exercise on postprandial glucose 
homeostasis are more related to the total energy consumed 
than with the peak of exercise intensity74. The effects of 
postprandial exercises however, do not seem so relevant 
in preventing postprandial lipid excursion. The comparison 
between the effect of exercises and dietary restrictions on 
the postprandial lipemia shows the remarkable advantage of 
exercises performed after meals. In a comparative study, the 
exercises were numerically three-fold more potent in reducing 
the postprandial lipid excursion when compared to calorie 
intake reduction76.

Diet
Carbohydrates are the most determinant dietary component 

in postprandial glycemic excursion. Other macronutrients 
can also influence the glycemic excursion, such as dietary 
fiber content and fats, which decrease glucose absorption. 
The postprandial glycemia depends on the amount of 
carbohydrates ingested in grams as well as on the type of 
the carbohydrates in the diet (glycemic index)77. Although 
carbohydrates are the mostly responsible for the glycemic 
elevation after meals, carbohydrate-poor diets are not 
recommended for diabetic patients, who must ingest 45-65% 
of their total caloric intake in the form of carbohydrates, with 
a minimum of 130 g/day for adults. However, the monitoring 
of the amount of carbohydrates ingested - carbohydrate 
counting - can be a useful tool to help diabetes treatment. 
Soluble fibers, such as guar gum and pectin, improve the 
postprandial glycemia, due to their viscosity and capacity to 
delay carbohydrate absorption78.

For the diet planning, one must take into account the 
carbohydrate counting, the lifestyle (physical activity) and the 
pharmacological treatment79. Additionally, the substitution 
of saturated fat for unsaturated fat (for instance, cold water 
fish, olive oil, etc), increase of soluble and insoluble fiber 
consumption, and consumption of fruit and vegetables 
instead of refined carbohydrates, all improve the profile of 
postprandial glycemic absorption and are beneficial from 
the cardiovascular point of view80. The consumption of small 
and moderate amounts of alcohol is also related to a lower 
prevalence of metabolic syndrome and insulin sensitivity 
improvement81.

Antidiabetic agents and their effect on 
postprandial hyperglycemia

The behavior therapy through diet and exercises can 
prevent the progression of carbohydrate intolerance to 
diabetes82. However, in established diabetes, the evolution of 
the pathology requires the use of pharmacological agents to 
maintain the postprandial state within the normal range.

Many times a combination of antidiabetic agents is 
necessary, as there can be several physiopathological 

mechanisms acting in a same patient, resulting in metabolic 
disorder (Table 1).

Insulin secretagogues
Sulphonylureas 

These substances have been broadly used in the treatment 
of type 2 diabetes. Its action mechanism depends on the 
binding and activation of a receptor in the pancreatic beta 
cell membrane, in the KATP-dependent calcium channel. 
They act by promoting the depolarization of the membrane 
with calcium inflow and subsequent insulin release. Thus, 
the sulphonylureas such as glibenclamide, glimepiride and 
glicazide, among others, act by increasing the circulating 
insulin levels, but do not correct the eventual deficiency of 
the first phase of the secretion, as its binding to the receptor 
is slow and prolonged. The sulfas correct the late postprandial 
hyperglycemia, but not the early one83-85.

Meglitinides
Repaglinide – It was the first class agent to be launched 

in the market. Although it has a mechanism of action similar 
to that of sulphonylureas, repaglinide binds to a different 
binding site at the potassium channel of the beta cell and 
interacts, little or not at all, with the potassium-channel of the 
cardiovascular tissue (in opposition to what is demonstrated 
by some sulphonylureas)86. Repaglinide allows the mimicking 
of the physiology of insulin secretion by stimulating a fast and 
short-duration insulin secretion trying to reproduce the first 
phase of secretion, usually abolished in established diabetes. 
This intense and short-duration action allows a therapy that 
encompasses postprandial hyperglycemia, minimizing the risk 
of hypoglycemia between meals. Regarding the reduction of 
HbA1C, repaglinide presents an efficacy that is similar to that 
of sulphonylureas. The primary site of Repaglinide metabolism 
is the liver and, therefore, it can be used in patients with renal 
insufficiency87,88. The treatment with repaglinide showed to 
improve the oxidative stress parameters in an open study89.

Nateglinide – It is a derivate from D-phenylalanine (DPA) 
that stimulates fast insulin secretion, allowing the reduction 
of postprandial hyperglycemia when taken before meals. 
Similarly to repaglinide, it is rapidly absorbed and eliminated, 
supplying an insulin secretion that is close to the physiological 
one; however, it seems to have a lesser power of reduction 
over HbA1C and fasting glycemia, when compared to other 
secretagogues90,91.

In clinical practice, the glinides are usually more often used 
in association to a sensitization agent, such as metformin or 
thiazolidinediones.

Insulin action sensitization agents
Biguanides – The most frequently used drug in this 

therapeutic class is metformin, which is the number one oral 
anti-diabetic agent prescribed in the world. This substance acts 
mainly by reducing the glucose production by the liver and also 
by slightly improving the peripheral sensitivity to insulin92. Its 
action on the liver indirectly contributes to the improvement 
of postprandial hyperglycemia, although classically its action 
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is described mainly on fasting glycemia and overall glycemic 
control93. There is evidence, however, that metformin also 
acts on the postprandial glycemic excursion, especially by 
increasing glucose availability for the tissues94. In addition, 
metformin also acts on non-classical cardiovascular markers, 
such as PAI-I reduction and fibrinolysis increase89. At the 
UKPDS, the treatment with metformin provided a reduction 
in the myocardial infarction risk of 39% in overweight patients. 
Additionally, there was a reduction of the risk of death related 
to diabetes of 42%95.

Thiazolidinediones (TZD) – TZDs act by reducing insulin 
resistance in skeletal muscle, liver and fat tissue. When 
they interact with the activated peroxisome proliferator-
activated receptor gamma (PPARγ), these agents modulate the 
transcription of some genes, related to insulin sensitivity96,97. 
Several studies have shown the efficacy of TZDs in promoting 
a good glycemic control in type 2 diabetes as monotherapy or 
in combination with other agents, with significant reduction 
in postprandial and fasting glycemia98. The association with 
glinides can potentialize this benefit regarding postprandial 
glycemia99. TZDs also have an important effect on the 
metabolic syndrome markers, such as increase of fibrinolysis 
and improvement in endothelial function91.

Alpha-glucosidase inhibitors (AGIs) – The AGI available 
in Brazil is acarbose, the first agent directed specifically 
to postprandial hyperglycemia. This drug inhibits the 
action of intestinal glucosidases, limiting the breakdown 
of oligosaccharides into monosaccharides, delaying the 
absorption of glucose and promoting a lower postprandial 
glycemic excursion100. It is effective in combination with 
other agents, improving glycemic control, although patients’ 
compliance might be low due to the gastrointestinal side 
effects101.

Insulin – From the clinical point of view, insulin replacement 

consists in prandial (bolus) and basal insulin. Prandial insulin is 
administered to restore the rapid physiological insulin response 
to feeding. The availability of new insulin analogs such as 
insulin-aspart and insulin Lispro allowed a better reproduction 
of rapid insulin secretion – first phase – in patients with insulin 
deficiency. These agents present an earlier and short-lasting 
peak of action, when compared to regular human insulin, 
which has a later and longer-lasting action. Thus, they are 
closer to the normal physiology, allowing a more adequate 
suppression of the hepatic glucose production and better 
glucose uptake by the peripheral tissues. The fast-acting insulin 
analogs provide a better control of postprandial glycemia and a 
lower risk of hypoglycemia between meals102. Additionally, an 
improvement in the oxidative stress and endothelial function 
parameters has also been described with the administration 
of these fast-acting analogs103,104. One option in the face of 
low compliance to the multiple-dose regimen of prandial 
and basal insulin doses is the use of premixed insulin analogs 
such as AspartMix 30, in which 30% of the dose consists of 
ultra fast acting insulin analog Aspart, and the remainder of 
N-protaminated insulin, or LisproMix25, with insulin Lispro. 
The use of this insulin schedule, despite being predetermined, 
can be useful in the postprandial glycemic control and also as 
the start of insulin therapy in patients with oral drug failure, 
but with a minimum insulin reservoir105,106. In January 2006, 
the first inhaled insulin was approved for clinical use in the 
USA by the FDA (Food and Drug Administration), which, 
due to its fast action, is indicated for the correction of the 
prandial peak107.

Combined therapy – considering the physiopathology of 
postprandial hyperglycemia, there is a rationale in the use of insulin 
action sensitization agents together with insulin secretagogues, or 
even insulin itself. This is consistent with the progressive character 
of diabetes mellitus, which usually implicates in a time-phased 
treatment of different associated agents108.

  Active substance Product 
reference Available dose Usual posology Reduction 

HbA1c (%)

Se
cr

et
ag

og
ue

s

Sulphas

Chlorpropamide Diabinese® 250mg 100-500mg;1x day

1.5 to 2.0

Glibenclamide Daonil® 5mg 5-20mg; 1-2 x day

Glimepiride Amaryl® 1, 2 and 4mg 1-4mg; 1x day

Glipizide Minidiab® 5mg 5 - 20mg; 1-2x day

Gliclazide Diamicron MR® 30mg 30-60mg ; 1x day

Glynides
Repaglinide NovoNorm® 0.5, 1 and 2 mg 3 - 6 mg/day before meals 1.0 to 2.0

Nateglinide Starlix® 120 mg 1 tablet before meals 1

Se
ns

ib
ili

ze
rs

Biguanide Metformin
Glifage® 500, 850 and 

1,000 mg
500 to 2550 mg /day after 
meals 1.5 to 2.0

Glifage XR®* 500 mg 500 to 1,000 mg /day;1x day

Glitazones
Rosiglitazone Avandia® 4 and 8mg 4-8mg ; 1-2x day

0.7 to 1.8
Pioglitazone Actos® 15, 30, 45mg 15-45mg ; 1x day

  α-glucosidase 
inhibitor Acarbose Glucobay® 50 and 100mg 50-300mg ; 1-3x day(<60Kg) 0.5 to 1.0

* will be launched in the Brazilian market in 2006.

Table 1 - Oral drugs available in Brazil for the treatment of hyperglycemia 
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