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ABSTRACT 
Variation in phytoplankton functional diversity is partioned and mapped using several indices and linkage methods 
based on dendrograms. Th e relationships between diversity metrics and major environmental predictors, including 
zooplankton density, were assessed in 29 phytoplankton communities of fl oodplain lakes distributed along the 
Middle Araguaia River in central Brazil. Th e dendrogram-based functional diversity indices were Functional Group 
Richness, Functional Diversity, Mean Pairwise Distance and Mean Nearest Taxon Distance, whereas seven diff erent 
hierarchical agglomerative linkage methods we used. Th e performance of indices were compared using ANOVA and 
their spatial variation in response to major environmental predictors evaluated. Th e results indicate that variation 
in functional diversity values is primarily a product of the type of index chosen. Th is variation was statistically 
signifi cant in 90 % of the fl oodplain lakes studied; however, a spatial pattern of variation in index values along the 
river was not detected. Furthermore, environmental constraints, including zooplankton density, were weak predictors 
of functional diversity indices. Th erefore, the mathematical characteristics of indices are of primary importance in 
explaining variation among functional diversity values.
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Introduction
Functional diversity is an important descriptor of 

biological communities (Mason et al. 2005), and is able to 
predict ecosystem dynamics and factors aff ecting ecosystem 
structure (Petchey & Gaston 2006). Functional diversity 
is defi ned as the values or range of values for existing 
functional traits in a community capable of affecting 
ecosystem functioning, such as primary production, 
stability, nutrient cycles and the provision of ecosystem 
services (Díaz et al. 2007; Tilman 2001; Cardinale et al. 
2012). Functional diversity has gained prominence in the 
scientifi c literature (Schleuter et al. 2010), which has led to 

the development of several indices for measuring it (e.g., 
Walker et al. 1999; Petchey & Gaston 2002; Heemsbergen 
et al. 2004; Botta-Dukát 2005; Villegér et al. 2008; Laliberté 
& Legendre 2010).

Mason et al. (2005) maintain that functional diversity 
can be divided into three distinct facets: functional richness, 
divergence and evenness/regularity. Indices that express 
richness usually indicate how much of niche space is 
occupied by a given species assemblage, while divergence 
refers to how species abundance diverges in niche space, 
and evenness indicates how regular the distribution of 
species abundance is within niche space (Schleuter et al. 
2010). Th ese three aspects are complementary (Mouchet 
et al. 2010) and when used in conjunction with one another 
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reveal the processes that link biodiversity to ecosystem 
functioning more clearly (Villegér et al. 2008). 

There are several indices capable of expressing these 
different facets. These indices can be based on distance 
matrices (e.g., FAD, Walker et al. 1999; MFAD, Heemsbergen 
et al. 2004; Rao (Rao 1982; Botta-Dukát 2005), functional 
dendrograms (e.g., FD, Petchey & Gaston 2002; MPD 
and MNTD, Webb 2000) or the volume occupied in 
multidimensional functional space (e.g., FRic, FDiv, FEve, 
Villéger et al. 2008; FDis, Laliberté & Legendre 2010), or 
they may consider intraspecific variability (TOP and TED, 
Fontana et al. 2016) and gaps in one-dimensional and 
multidimensional functional space (e.g., FRls and FRlm, 
Schleuter et al. 2010). While some of the most commonly 
used indices are based on dendrograms (e.g., Hidasi-Neto 
et al. 2012; Carvalho & Tejerina-Garro 2014; Rodríguez 
& Ojeda 2014), they remain the subject of numerous 
discussions regarding methodological aspects inherent 
in their construction (Podani & Schmera 2006; Petchey & 
Gaston 2007; Podani & Schmera 2007; Mouchet et al. 2008). 

One of the simplest ways to measure functional diversity 
in a community is to calculate Functional Group Richness 
(FGR). In the FGR index, the functional similarity between 
species may be determined from a distance matrix, constructed 
based on the functional traits of species, and converted into a 
dendrogram via a linkage method (Ricotta 2005). A threshold 
dendrogram is then defined to determine the similarity level 
between species, allowing similar species to be grouped within 
the same functional group (Petchey & Gaston 2006). The 
dendrogram threshold is usually arbitrary (but see Teresa et al. 
2015) and it is defined according to the purpose of the study 
or the researchers’ own criteria (Pla et al. 2012). 

Other continuous methods (i.e., which do not divide the 
species into functional groups according to their traits) for 
assessing functional diversity have been developed, many 
of which are derived from the calculation of phylogenetic 
diversity (Pavoine & Bonsall 2011). The Functional Diversity 
(FD) index is the sum of dendrogram branch lengths (Petchey 
& Gaston 2002), generated from a functional traits distance 
matrix, while the Mean Pairwise Distance (MPD) index is 
the average distance between pairs of species that compose 
a community (Webb 2000) and the Mean Nearest Taxon 
Distance (MNTD) index is equal to the average dendrogram 
lengths between the functionally most similar pairs of 
species in the community (Webb 2000). Although there 
are other continuous indices of functional diversity based 
on dendrograms (e.g., GFD Mouchet et al. 2008; NMDS 
Cadotte et al. 2009), the above mentioned indices are some 
of the most frequently used to describe functional richness 
and divergence in aquatic (Colzani et al. 2013; Carvalho 
& Tejerina-Garro 2015; Dunck et al. 2015) and terrestrial 
communities (e.g., Bihn et al. 2010; Cianciaruso et al. 2012; 
Hidasi-Neto et al. 2012). 

Calculating functional diversity based on dendrograms 
usually requires three methodological steps: the construction 

of a distance matrix from species functional traits, the 
selection of a linkage method and the construction of 
the functional dendrogram (Petchey & Gaston 2006). 
The selection of the distance matrix and linkage method 
generate variation in the resulting indices due to sensitivities 
to different methodological steps used in dendrogram 
construction (Poos et al. 2009). However, another potential 
source of variation is the measurement of functional 
diversity, which depends on the choice of index itself, from 
the various options available in the literature (e.g., FGR, 
FD, MPD, MNTD).

In addition to methodological controversies, some indices 
may be differentially sensitive to environmental conditions, 
causing differences in their predictive power (Pakeman 
2011). These differences in performance are commonly 
associated with the mathematical characteristics of the 
metrics (Petchey et al. 2004; Ricotta 2005). For example, 
MPD and MNTD differ in relation to functional richness 
indices (e.g., FGR and FD) because they are divergence 
indices, based on the average distance between species 
rather than the sum of functional entities. Patterns of 
average pairwise differences between species have been used 
to address the processes underlying species co-occurrence 
(Tucker et al. 2017). In fact, the co-occurrence of functionally 
similar species has been associated with processes of 
environmental filtering, while limiting similarity processes 
has been associated with the co-occurrence of functionally 
distinct species (Mouillot et al. 2007; Sobral & Cianciaruso 
2015; but see Mayfield & Levine 2010). Therefore, we would 
expect that metrics describing how different, on average, 
species are among communities could be more informative 
for predicting niche-based processes. 

While previous studies have compared the performance 
of different functional diversity indices (e.g., Petchey et al. 
2004; Schmera et al. 2009; Teresa & Casatti 2017), none of 
these studies were dedicated exclusively to indices based on 
dendrograms, despite their increased use and occurrence 
in the scientific literature (for the use of FD see Mouchet 
et al. 2008; Petchey et al. 2009). Similarly, there are ample 
discussions on their methodological issues (Podani & 
Schmera 2006; 2007; Petchey & Gaston 2007), although 
there is still no general consensus (Mouchet et al. 2008). ;

Here, we present a methodological approach for 
evaluating variation among functional diversity metrics 
based on dendrograms (see a similar approach to evaluating 
variation of ecological niche models by Diniz-Filho et 
al. 2009) in geographical space, using phytoplankton 
community data from 29 floodplain lakes in the Middle 
Araguaia River, central Brazil. Thus, we address the following 
questions: i) How important are the type of index and 
linkage method as sources of variation in functional 
diversity values of lake communities? ii) Is the variation 
among values of functional diversity spatially structured 
along the floodplains, that is, are more proximate lakes 
more similar in terms of functional diversity than more 
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distant lakes? iii) Do diversity-environment relationships 
vary according to the type of index and/or linkage method? 
We expect that the choice of index and linkage method 
will explain variation among functional diversity values. 
We further expect that this variation originates from 
index characteristics that depend upon how each index is 
associated with environmental variables. To answer the first 
question we use the decomposition of the sum of squares 
(ANOVA) considering variation of the indices and linkage 
methods within each lake. To answer the second question, 
we measured the spatial pattern of variation in functional 
diversity through the Moran I index, and to answer the 
third question, we associated environmental variables 
with functional diversity indices through a Canonical 
Correspondence Analysis.

Materials and methods
Dataset

We sampled 29 floodplain lakes located along 500 km of 
the Middle Araguaia River and four large tributaries (Crixás, 
Mortes, Vermelho and Cristalino) in central Brazil (Fig. 1). 
The floodplain lakes are distributed among the states of 
Goiás, Tocantins and Mato Grosso (14°72’86” to 10°54’73”S 
51°03’57’’ to 50°55’22’’W). Samples were collected in 
January 2012 during the high-water period. We chose this 
month, because it is in the middle of the rainy period (started 
in November), and the characteristics of the phytoplankton 
community, landscape, morphometrics and limnology of 
the lakes have already stabilized and therefore different 
from that of low water periods (Nabout et al. 2006; 2009). 
Moreover, although we use one temporal sample, the present 
study was developed on a wide spatial scale, thus taking 
into consideration biological, limnological, morphometric 
and landscape variation. During the collection period, 19 
of the lakes were connected to the main river channel and 
10 were isolated. The floodplain lakes varied in terms of 
limnological, morphometrical and soil use characteristics 
(Machado et al. 2015; 2016) and represent 29 communities 
that vary in phytoplankton species richness (6-22 species, 
see details in Machado et al. 2015).

Phytoplankton was collected from subsurface water 
(0.5 m), stored in dark bottles and fixed with acetic acid 
modified Lugol’s (Vollenweider 1974). Individuals were 
identified to the lowest taxonomic level possible. We 
obtained 10 functional traits (Weithoff 2003; Kruk et 
al. 2010) of the 115 phytoplankton species found in the 
region: maximum linear dimension, individual surface 
area, individual biovolume, biological form, mucilage, 
demand for silica, heterocytes, mixotrophy, flagella and 
aerotopes. For the traits “biological form” and “mucilage”, 
species were classified according to the states of the 
functional trait, where the same species can show more 
than one state (Tab. 1). The traits were obtained through 

screening the samples and consulting the literature or 
specialists (Tab. 1). The counting of individuals and 
the measurements to obtain the functional traits 
were performed in separate steps, since these two 
approaches require the use of different microscopes 
(inverted microscope for counting individuals and optical 
microscope for performing cell measurements). Thus, 
not all counted individuals were found again for the 
measurements. We measured the cell dimensions for 
all the individuals of a species found in the samples 
(between one and four individuals) and then calculated 
the average value to estimate maximum linear dimension, 
biovolume and individual surface area. The individual 
surface area and biovolume of species were estimated 
using the equations described in Hillebrand et al. (1999). 

We assessed the following local environmental 
variables: oxygen saturation, total nitrogen, total 
phosphorus and transparency. These variables are 
important to the organization of phytoplankton 
communities and are known to regulate their dynamics 
in aquatic environments (Reynolds 2006). Zooplankton 
are one of the main predators of phytoplankton in aquatic 
environments and, along with environmental variables, 
play an important role in the structure and dynamics 
of these communities (Reynolds 2006). Thus, within 
the set of local environmental variables we included a 
variable “zooplankton density”, which was the sum of 
the density of all zooplankton groups (i.e., cladocerans, 
copepods and rotifers). Oxygen saturation was estimated 
using a portable oximeter (Digimed DM- 4P) and water 

Figure 1. Location of the 29 floodplain lakes sampled along the 
Middle Araguaia River and its tributaries. Numbers indicate the 
floodplain lakes studied along the basin.
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transparency was measure using a Secchi disk. The 
concentrations of total nitrogen and total phosphorus 
were obtained following the protocols described in 
Zagatto et al. (1981). For the collection of zooplankton, 
500 liters of water were filtered through a plankton 
net (68 µm mesh) using a suction pump. The number 
of organisms was estimated according to Bottrell et al. 
(1976) and the total density was expressed in individuals 
per cubic meter (ind/m³). All variables were assessed at 
the same place and depth as the phytoplankton. Further 
details on the sampling of zooplankton are described in 
Machado et al. (2015).

Landscape variables were represented by the types of 
land cover around each floodplain lake. Land cover data 
were obtained through interpretation of satellite Landsat 
5TM images (30-meter spatial resolution, orbits 223/67 
to 223/70) that are freely available from the Instituto 
Nacional de Pesquisas Espaciais (INPE; http://www.dgi.
inpe.br/CDSR/). The scenes were georeferenced based 
on Geocover images (GLS-Landsat, available at http://
landsat.usgs.gov/), after which we constructed image 
mosaics. These procedures were performed using the 
software ERDAS. We created a buffer of 10 km around 
each floodplain lake and quantified the percentage of 
different land cover classes (i.e., agriculture, native Cerrado 
vegetation and pasture) found within the buffer with 
Arcgis 9.3. The choice of spatial scale for this study was 
due to many factors, such as the biology of the studied 
taxa, dispersal capabilities, sampling interval and system 
heterogeneity (Legendre & Legendre 1998). We used a 
buffer of 10 km with the intention of capturing an impact 
gradient along the sampled lakes (i.e., native vegetation, 
pasture and agriculture).

Functional diversity indices and linkage methods

We used four distinct functional diversity indices 
based on dendrograms: Functional Group Richness (FGR); 
Functional Diversity (FD) proposed by Petchey & Gaston 
(2002); Mean Pairwise Distance (MPD) and Mean Nearest 
Taxon Distance (MNTD) described in Webb (2000). We 
selected these four indices because they are commonly used 
in functional ecology (Petchey et al. 2009; Hidasi-Neto et 
al. 2012; Best et al. 2013; Coyle et al. 2014), they represent 
different aspects of diversity and have different mathematical 
characteristics (Pavoine & Bonsall 2011). Although MNTD 
and MPD can be calculated with a raw distance matrix 
(Kembel et al. 2010; 2014), their interpretation is more 
intuitive when these indices are based on dendrograms, 
which is why their calculation using dendrograms is very 
common (e.g., Cianciaruso et al. 2012; Hidasi-Neto et al. 
2012; Carvalho & Tejerina-Garro 2014; Dunck et al. 2015). 

Numerous linkage methods exist, which are classified 
according to their methodological characteristics (e.g., 
hierarchical or non-hierarchical; agglomeration or division, 
and others, Legendre & Legendre 1998). Here we calculated 
each index using seven hierarchical agglomerative linkage 
methods (Legendre & Legendre 1998): Single Linkage 
Agglomerative Clustering (Single); Ward Minimum 
Variance Method (Ward); Complete Linkage Agglomerative 
Clustering (Complete); Unweighted Arithmetic Average 
Clustering (UPGMA); Weighted Arithmetic Average 
Clustering (WPGMA); Weighted Centroid Clustering 
(WPGMC) and Unweighted Centroid Clustering (UPGMC). 
In each community, we obtained seven values for each 
functional diversity index from the seven linkage methods 
used (Fig. 2).

Table 1. Phytoplankton functional traits used to calculate the functional diversity indices based on dendrograms via seven linkage 
methods. The classified categorical traits indicate that species may be simultaneously classified into more than one category. For 
example, the same species may be found in unicellular or colonial biological form. MLD: Maximum Linear Dimension; ISA: Individual 
Surface Area; 1: functional attributes were obtained during the screening of samples; 2: functional attributes were obtained from the 
literature and consulting databases and experts.

Attribute Type Functional attribute state
MLD1 Quantitative µm
ISA1 Quantitative µm³

Individual Biovolume1 Quantitative µm

Biological Form2 Categorical

Unicellular 
Colony

Coenobium
Sincoenobium

Filament
Chains

Demand for silica 2 Nominal Presence – absence
Heterocytes 2 Nominal Presence – absence
 Mixotrophy2 Nominal Presence – absence
Aerotopes2 Nominal Presence – absence

Flagella2 Nominal Presence – absence
Mucilage2 Categorical  Presence – absence
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Several methods have been proposed for the calculation 
of FGR, generally using environmental features (e.g., 
Pillar 1999; Pillar & Sosinski Junior 2003). However, 
to be consistent with the other indices (FD, MPD and 
MNTD), which do not consider environmental data in their 
calculations, we calculated FGR using only the functional 
traits of organisms (e.g., Pla et al. 2012). To date, there are 
no consolidated procedures for defining the cut-off point 
for dendrograms, and thus these criteria are usually defined 
according to the purposes of the researcher (Pla et al. 2012).

For our definition of FGR, we arbitrarily set the threshold 
for functional similarity between species at 0.70. A similarity 
greater than 0.70 is considered a high value (e.g., to define 
taxonomic resolutions, Heino 2010; or evaluation of 
collinearity, Tabachnick & Fidell 1989). Thus, this value 
was adopted because we believe that species that share more 
than 70 % of functional traits may be associated with similar 
ecosystem functions. Although the choice of cut-off point 
in the dendrogram can be another source of variation for 
functional diversity values, such variation does not occur in 
indices such as FD, MPD and MNTD, and it was therefore 
not included in this study. We standardized all indices to 
vary from zero (minimum functional diversity value) to 
one (maximum functional diversity value).

	 Our functional attribute matrices had different 
mathematical characteristics, including quantitative, 
categorical and nominal traits. Thus, we constructed 
dendrograms using Gower distance matrices. The choice of 

distance matrix may also be identified as a cause of variation 
in the calculation of functional diversity indices (Mouchet et 
al. 2008). However, Gower distance is recommended as the 
best choice for data with different scales or missing values 
(Podani & Schmera 2006; Petchey & Gaston 2009), and 
accommodates different types of variables (e.g., categorical, 
numeric, nominal, ordinal; Podani & Schmera 2006). We 
constructed the Gower distance matrices using the generalized 
Gower distance method proposed by Pavoine et al. (2009). 

To evaluate if the indices are associated with species 
richness, we performed a Pearson correlation. The indices 
were calculated using the vegan (Oksanen et al. 2015) and 
Picante (Kembel et al. 2014) packages in R 3.2.2 (R Core 
Team 2015). 

Evaluating and mapping variation of functional 
diversity indices 

We conducted a two-way analysis of variance (ANOVA) 
without replication (Zar 2010) to detect variation between 
the functional diversity indices and their linkage methods. 
We used an analysis of variance without replication, since we 
had only one functional diversity value for each combination 
of factors (type of index and type of linkage method). In 
situations where there is no replication, it is not possible to 
estimate the interaction (Zar 2010). The first factor in the 
ANOVA (hereinafter factor A) was the type of functional 
index, while the second factor (hereinafter factor B) was 

Figure 2. Schematic representation of the methods used to verify variation in the performance of functional diversity indices based 
on dendrograms and their linkage methods. The abbreviations used are as follows: FGR (Functional Group Richness); FD (Functional 
Diversity); MPD (Mean Pairwise Distance); MNTD (Mean Nearest Taxon Distance); Single (Single Linkage Agglomerative Clustering), 
Ward (Ward Minimum Variance Method), complete (Complete Linkage Agglomerative Clustering), UPGMA (Unweighted Arithmetic 
Average Clustering), WPGMA (Weighted Arithmetic Average Clustering), WPGMC (Weighted Centroid Clustering) and UPGMC 
(Unweighted Centroid Clustering), CCA: Canonical Correspondence Analysis.
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the type of linkage method used. We obtained the sum 
of squares of the indices (SQI), the sum of squares of the 
linkage methods (SQLM), the residual sum of squares (SQR; 
i.e., the portion of the variation that is not explained by 
the functional diversity indices and linkage methods) 
and the variation determined by the two factors together 
(i.e., the indices and linkage methods; SQT). We tested 
the significance level for components A and B using the F 
statistic (P <0.05). This approach was adapted from Diniz-
Filho et al. (2009), who used a similar approach to evaluate 
variation among niche models and climate scenarios in 
global climate change projections of New World birds. 

We calculated the ANOVA by performing spatial 
decomposition of the sum of squares; i.e., the variation 
caused by the indices and linkage methods was determined 
in each floodplain lake. Thus, we mapped the variation 
obtained for the indices and linkage methods along the 
middle floodplain of the Araguaia River. To statistically verify 
the spatial patterns identified in the maps, we built spatial 
correlograms for each component of variation (i.e., SQI, 
SQLM and SQT) using Moran’s I coefficient. We employed 
six distance classes according to the Sturge rule (Legendre 
& Legendre 1998), and obtained significance levels using 
Bonferroni correction (Legendre & Legendre 1998). The 
spatial analyses were conducted with the Software SAM 
(Rangel et al. 2010). 

Canonical Correspondence Analysis (CCA) was 
performed to verify whether the indices and linkage 
methods were associated with different local or landscape 
variables. Thus, the variables used were: oxygen saturation, 
total phosphorus, total nitrogen, transparency, zooplankton 
density and presence of native Cerrado, agricultural and 
pastoral vegetation. In this analysis the limnological 
variables and zooplankton density were standardized using 
the Z score method and land use types by the arcsine of 
the square root x 180 / pi. The CCA was performed using 
the vegan package (Oksanen et al. 2015) in R (R Core Team 
2015). The total significance of the CCA was verified with 
a Monte Carlo test with 1000 randomizations. A summary 
of the methodology used in this study is represented 
schematically in Figure 2.

Results
We found 115 phytoplankton species considering all 

evaluated floodplain lakes, with a mean of 14 species per lake 
(coefficient of variation = 27 %). On average, considering 
all linkage methods, we found 13 functional groups in the 
lake with the highest species richness and 5 functional 
groups in the lake with the lowest species richness. Mean 
values of FD, MPD and MNTD in the lake with the highest 
species richness were 1.00, 0.93 and 0.57, while in the lake 
with the lowest species richness they were 0.42, 0.96 and 
0.99, respectively. The FGR and FD indices were positively 
correlated with species richness, while MPD and MNTD 

were negatively correlated with richness, although for MPD 
the correlations are not significant (Tab. 2).

The two-way ANOVA without replication applied to the 
functional diversity indices and linkage methods indicated 
that FGR, FD, MPD and MNTD values were distinct from 
each other for most of the assessed lakes (except for lakes 
7, 17 and 24). However, we did not observe differences 
among linkage methods (Fig. 3). When we compared the 
indices and linkage methods, most of the variation in the 
values of functional diversity was assigned to the type of 
index used (Tab. 3).

Distinct values were observed for different functional 
diversity indices within the same community. However, we 
did not find a spatial pattern in the variation of the indices 
across the 29 sampling units. This is demonstrated by the 
dispersal pattern of the mapped points (Fig. 4) and by the 
absence of significant Moran’s I values (Tab. 3).

The first and second CCA axes applied to the 
environmental variables and functional diversity indices 
together explained 29 % of the variation in the data. We 
observed the formation of three distinct groups of indices 
(Fig. 5); the first group corresponded to MNTD, the second to 
MPD and the third to the FGR and FD. Local environmental 
and landscape variables did not exhibit statistically 
significant relationships with any of the functional diversity 
indices (Monte Carlo test, P = 0.32); in other words, these 
variables, which were measured in each lake, did not explain 
the variation among indices.

Discussion
The evaluation of variation in methodological approaches 

has been performed for species distribution models (e.g., 
Diniz-Filho et al. 2009; Tessarolo et al. 2014), richness 
estimators (e.g., Brose et al. 2003), beta diversity indices 
(e.g., Anderson et al. 2011) and functional diversity indices 
(e.g., Petchey et al. 2004; Schmera et al. 2009; Mouchet et 
al. 2010). In this study, we used an approach that enabled 
us to map the sources of variation (i.e., type of index and 
linkage method) when calculating functional diversity 
via dendrograms and to evaluate their relationships with 
environmental conditions. Our results indicate that the 
main source of variation for functional diversity values in 
phytoplankton communities is the type of index used, while 
the choice of linkage method seems to be less influential. 

The number of planktonic species sampled here may be 
considered low when compared to other studies conducted 
in the Araguaia River floodplain (e.g., Nabout et al. 2006; 
2007). This is probably due to the period in which the 
samples were collected, since the flood pulse tends to 
homogenize the environments of the plain (Thomaz et 
al. 2007). A relationship between species richness and 
functional diversity indices is commonly found in different 
communities (e.g., Petchey et al. 2009; Bihn et al. 2010; 
Hejda & de Bello 2013), with the strongest effects usually 
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Table 2. Pearson correlation between species richness and functional diversity indices according to linkage method. The index values 
were standardized to range from zero to 1. The abbreviations used are as follows: FGR (Functional Group Richness); FD (Functional 
Diversity); MPD (Mean Pairwise Distance); MNTD (Mean Nearest Taxon Distance); Single (Single Linkage Agglomerative Clustering), 
Ward (Ward Minimum Variance Method), complete (Complete Linkage Agglomerative Clustering), UPGMA (Unweighted Arithmetic 
Average Clustering), WPGMA (Weighted Arithmetic Average Clustering), WPGMC (Weighted Centroid Clustering) and UPGMC 
(Unweighted Centroid Clustering).

Functional diversity indices Linkage method r P
FGR Single 0.87 <0.001
FGR Ward 0.32 0.08
FGR Complete 0.83 <0.001
FGR UPGMA 0.87 <0.001
FGR WPGMA 0.84 <0.001
FGR WPGMC 0.97 <0.001
FGR UPGMC 0.96 <0.001
FD Single 0.91 <0.001
FD Ward 0.92 <0.001
FD Complete 0.93 <0.001
FD UPGMA 0.92 <0.001
FD WPGMA 0.92 <0.001
FD WPGMC 0.89 <0.001
FD UPGMC 0.93 <0.001

MPD Single -0.09 0.61
MPD Ward -0.06 0.74
MPD Complete -0.14 0.46
MPD UPGMA -0.01 0.92
MPD WPGMA -0.20 0.28
MPD WPGMC -0.30 0.10
MPD UPGMC 0.02 0.89

MNTD Single -0.50 0.005
MNTD Ward -0.66 <0.001
MNTD Complete -0.64 <0.001
MNTD UPGMA -0.57 <0.001
MNTD WPGMA -0.61 <0.001
MNTD WPGMC -0.52 <0.001
MNTD UPGMC -0.48 0.007

Figure 3. Values obtained for the sum of squares (SQ) of the two-factor analysis of variance without replication performed between 
the functional diversity indices (A) and linkage methods (B). The number above each bar indicates the F-value (5 % critical F-value for 
the functional diversity indices = 3.18 and the linkage methods = 6.18). The abbreviations used are as follows: SQI (sum of squares of 
the index), SQLM (sum of squares of the linkage methods). The asterisk (*) indicates a significant result (p <0.05).
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occurring when a large number of functional traits are 
used that are not correlated with each other (Petchey et 
al. 2009). FD and FGR were positively correlated with 
species richness, while MPD and MNTD presented the 
opposite pattern (although MPD showed no significant 
correlation). These differences are associated with the 
mathematical characteristics of the indices. While FD and 
FGR are metrics that sum functional differences, MPD and 
MNTD are based on the average of the pairwise difference 
between species, so that the addition of a redundant species 
can reduce the values of MPD and MNTD (Petchey et al. 
2009; Tucker et al. 2017). Our results suggest that species 
added in richer communities tended to be functionally 
redundant, causing the average distances to be reduced 

and generating a negative correlation, a pattern that can 
be interpreted as resulting from communities structured 
by environmental filtering (Mouillot et al. 2007). In fact, 
by analyzing the same dataset, Machado et al. (2016) found 
that local environmental variables were important in driving 
variation in phytoplankton community composition. 

The four indices showed different values within the same 
community and this pattern of variation was not spatially 
structured. That is, we did not find a spatial pattern for the 
variation of functional diversity along the Middle Araguaia 
River. Thus, it was not possible to identify sets of floodplain 
lakes that were geographically closer, in which variation 
in the indices used was higher or lower. Phytoplankton 
species exhibit different forms of dispersal (Reynolds 

Table 3. Variation attributed to the index (SQI), linkage method (SQLM) and the interaction between the two factors (SQT), considering 
the 29 floodplain lakes. The spatial variation in each component was evaluated using Moran’s I coefficient. The values in the table indicate 
Moran’s I coefficient for the first-class distance. We did not obtain any significant correlograms according to the Bonferroni correction.

Variation Source
Sum of Square Spatial Pattern

Mean Minimum Maximum Moran’s I P
SQI 0.51 0.07 2.06 0.067 0.38

SQLM 0.04 0.005 0.18 -0.11 0.52
SQT 0.82 0.28 2.48 0.064 0.29

Figure 4. Variation observed among the four functional diversity indices (SQI) and the seven linkage methods (SQLM) across the 
sampling units. The sizes of the dots indicate the values obtained for the sum of squares of the indices. We did not find any significant 
differences for the sum of squares for the linkage methods.
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2006), which may contribute to their wide distribution. 
Indeed, species composition and the functional traits used 
to calculate the indices, have no spatial pattern in these 
communities (Machado et al. 2016). In fact, many studies 
have shown that space is not limiting for the occurrence 
of phytoplankton species in tropical metacommunities 
(Nabout et al. 2009; Huszar et al. 2015). In addition, we 
evaluated the communities in the period of high waters, in 
which the floodplain environments tend to be connected.

The choice of linkage method is considered to be one 
of the causes of variation in dendrograms (Merigot et al. 
2010). However, our results indicated that the choice of 
linkage method did not influence variation in functional 
diversity values and did not affect their relationship with 
environmental conditions. Thus, the differences between 
the linkage methods may not be sufficient to modify general 
functional diversity patterns (Petchey & Gaston 2009), and 
one of the main criteria to be carefully considered during 
the calculation of functional diversity through dendrograms 
is the choice of index.

Although the association with environmental variables 
is not a criterion for assessing the performance of indices, 
the existence of such a correlation could be informative for 
identifying community assembly mechanisms (Mouchet 
et al. 2010) and for applied purposes (e.g., trait-based 
biomonitoring, Teresa & Casatti 2017). We selected 
environmental variables that are important for explaining 
variation in functional traits (Machado et al. 2016). 
However, contrary to our expectations, local environmental 
and landscape variables did not predict the differentiation 

among functional diversity indices. We expected that indices 
based on the average distances between species (MPD and 
MNTD) would perform better at detecting niche-based 
processes, due to their higher sensitivities to the occurrence 
of trait convergence and divergence (Tucker et al. 2017). 
However, it is possible that species functional identity drives 
variation in phytoplankton composition in floodplains. In 
this case, functional traits would outperform functional 
diversity metrics in predicting community assembly 
mechanisms (Díaz & Cabido 2001; Machado et al. 2016; 
Teresa & Casatti 2017). 

Although the relationship between environment and 
variation in functional diversity was not significant, there 
is a clear pattern of differentiation between the indices in 
the CCA analysis. These results confirm the pattern obtained 
in the ANOVA, demonstrating once again, that the main 
source of variation in functional diversity is due to the 
type of index (as the different linkage methods of the same 
index are grouped close together in the CCA analysis). The 
MPD index is more sensitive to changes in the base of the 
functional dendrogram, while MNTD is more sensitive to 
changes in terminal branches (Webb 2000). This occurs 
because MPD considers the mean distances between all 
pairs of species that compose the community, while MNTD 
evaluates if neighboring species in the dendrogram are 
similar (Swenson 2014). These differences may have caused 
these indices to be grouped differently in the CCA. 

On the other hand, FD considers the small functional 
differences among species that tend to be ignored by FGR 
when these differences occur within the same functional 

Figure 5. Canonical Correspondence Analysis (CCA) applied to the functional diversity indices and environmental variables. The 
numbers 1 to 7 represent the different linkage methods. 1 = Single Linkage Agglomerative Clustering; 2 = Ward Minimum Variance 
Method; 3 = Complete Linkage Agglomerative Clustering; 4 = Unweighted Arithmetic Average Clustering; 5 = Weighted Arithmetic 
Average Clustering; 6 = Weighted Centroid Clustering and 7 = Unweighted Centroid Clustering.
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group; that is, large interspecific functional differences define 
the formation of functional groups (for sensitivity of FGR 
see Petchey & Gaston 2002). However, more functionally 
unique species have relatively high contributions to variation 
in functional diversity measured by FD and FGR, which 
contribute to these indices being grouped in a similar way. 

Based on our results, it is not possible to recommend 
an index or linkage method that is more appropriate for 
verifying the association of functional diversity with 
environmental conditions. However, in this situation, we 
suggest that the use of cophenetic correlation (Petchey & 
Gaston 2007) or consensus trees (Mouchet et al. 2008) 
should be adopted for the selection of a linkage method and 
the association of the different indices with environmental 
variables should be carefully considered.

In general, a consensus measure of functional diversity 
is not yet considered to exist (Ricotta 2005; Maire et al. 
2015). Thus, the evaluation of differences in functional 
diversity indexes performance is highly relevant, as is an 
evaluation of what different metrics are actually measuring. 
This study has provided a methodological approach for 
decomposing and mapping variation in functional diversity 
indices based on dendrograms and has further evaluated 
their relationships with environmental conditions. Although 
local environmental and landscape variables do not explain 
the differentiation among functional diversity indices, we 
encourage further studies using different taxa and spatial 
scales to adopt this approach. For example, at large scales 
it is possible to investigate variation in functional diversity 
indices in relation to environmental gradients and climatic 
and historical effects. Furthermore, this methodology can 
be tested in other communities with different richness 
levels or in relation to other facets of functional diversity, 
or include the variation generated by intraspecific variability 
(e.g., Cianciaruso et al. 2009), missing data or trait 
transformations (e.g., Májeková et al. 2016). 

For the natural phytoplankton communities in the 
studied floodplain lakes, the linkage method was less 
important for functional diversity values. Thus, the most 
important criterion is the choice of index. In summary, the 
identification of a perfect functional diversity metric is a 
task that is far from complete, because each one expresses 
functional diversity differently (i.e., mathematically and 
methodologically). Nevertheless, approaches that measure 
variation of indices may be useful due to the great number 
of metrics that continue to arise and the increasing need 
for consolidation of functional diversity concepts.
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