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ABSTRACT
Dyes used in the textile industry contribute significantly to the increase of water pollution as they are disposed of, 
most of the time, without proper treatment. Indigo carmine is a synthetic dye widely used in the coloring of jeans 
and is considered difficult to remove, causing irreversible damage to the food chain in ecosystems. Mycomediation 
appears as an economical and sustainable way to treat textile effluents, and this work tested three strains of Trametes 
collected in Brazil against the ability to discolor the indigo carmine and also the activity of laccase, lignin and 
manganese peroxidases. The experiment was carried out in Kirk medium under static, non-sterile condition, at ± 28 °C  
for 120 h. Trametes lactinea (URM8350) discolored 81.40 % of the indigo carmine, T. lactinea (URM8350) 85.09 % 
and T. villosa (URM8022) 96.11 %. Laccase was detected in all specimens. Manganese peroxidase was detected in  
T. villosa and T. lactinea (URM8354), while lignin peroxidase was not detected in any of the isolates. The ability of  
T. lactinea to discolor dyes is reported for the first time. The discoloration rates demonstrate the ability of the strains to 
discolor carmine indigo and their promising use in the discoloration processes in wastewater from the textile segment.
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Introduction
Population growth allied to industrial development has 

caused serious environmental problems, such as pollution of 
soil and water by chemicals (Zhang et al. 2011; Rodríguez-
Couto 2017; Choi 2021). Among the pollutants, the effluents 
from paper, cellulose, textile and petrochemical industries 
and from alcohol distilleries contain aromatic, recalcitrant 

and xenobiotic compounds, responsible for the intense color 
and toxicity of wastewater (Sharma et al. 2011; Almeida et 
al. 2016; Chowdhury et al. 2020).

The textile sector is considered to be one of the largest 
sectors in the manufacturing industry in the world. In 
Brazil alone, the segment is responsible for generating 1.5 
million direct jobs, being considered the largest textile chain 
in the West (Abit 2020) and employs 75 million people 
worldwide (De Oliveira et al. 2021). However, its expansion 
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and maintenance cause damage to the environment, since 
the dyeing and washing processes of the fabric generate a 
large volume of effluents containing xenobiotic compounds, 
including dyes (Rodríguez-Couto 2009; Singh 2017).

Synthetic dyes are designed to resist discoloration, high 
temperatures and antioxidant chemicals. Therefore, they 
have a stable chemical structure, usually recalcitrant, highly 
toxic, mutagenic and carcinogenic (Baughman & Weber 
1994; Vacchi et al. 2017; Berradi et al. 2019; Benkhaya et 
al. 2020). The presence of dyes in water bodies, even in 
small concentrations, interferes with the trophic chain in 
aquatic ecosystems, as it prevents the penetration of the 
light necessary for photosynthesis, thus causing serious 
environmental problems (Kunz et al. 2002; Berradi et al. 
2019; Benkhaya et al. 2020; Chowdhury et al. 2020). The 
production of dyes reaches 7 x 107 tons per year in the world, 
of which Brazil accounts for 2.6 %. Of this production, 10-
20% is transformed into wastewater (Carneiro & Zanoni 
2016; Sen et al. 2016; Benkhaya et al. 2020). Indigo carmine 
synthetic dye belongs to the group of indigoids and has a 
ketone group (C = O) in its chemical structure. It is widely 
used in the food, paper, cellulose and textile industries, 
being indispensable in dyeing denim (Choi 2020 & 2021; 
Chowdhury et al. 2020). Considered chemically stable and 
difficult to remove when discarded in the environment 
(Guaratini & Zanoni 2000; Choi 2020), it is one of the 
main causes of wastewater coloring originated from textile 
effluents. The yarn dyeing process requires large amounts of 
water: it is estimated that for each kilogram of manufactured 
product, 200 to 400 liters of water are required, 88 % of 
which will be discarded with more than 10,000 by-products, 
as chlorinated compounds, salts, auxiliary chemicals, 
surfactants and especially dyes (Sen et al. 2016; Almeida 
et al. 2016; Singh 2017; Choi 2020; De Oliveira et al. 2021).

There are numerous chemical and physical dye removal 
strategies implemented over the years. These include 
adsorption, flocculation, photodegradation, membrane 
filtration and coagulation (Adenan et al. 2020). The 
treatment of wastewater from the textile industry, especially 
discoloration, is expensive and not always effective as it can 
generate a large volume of sludge and generally requires 
the addition of other chemical additives dangerous to the 
environment (Singh 2017). Therefore, the search for low-
cost biological alternatives is urgent. Biological removal 
of dyes can occur through three mechanisms: biosorption, 
bioaccumulation and/or biodegradation (Sen et al. 2016; 
Singh 2017; Chowdhury et al. 2020). Biosorption involves 
trapping the dye by binding the dye molecules to the 
functional groups present on the cell wall. Subsequently, 
the dyes are accumulated intracellularly in the living 
cells through a process known as bioaccumulation. The 
biodegradation process involves the breakdown of dye 
molecules by enzymes produced by microbial cells, where 
complete eradication of dyes is possible (Jasińska et al. 
2015; Adenan et al. 2020). Mycoremediation emerges as 

an economically viable and ecologically effective biological 
alternative, as fungi are able to adapt to various pH and 
temperature ranges, in addition to producing extracellular 
lignolytic enzymes such as laccase (EC 1.10.3.2), lignin 
peroxidase (EC 1.11.1.14) and manganese peroxidase (EC 
1.11.1.13), which can mineralize xenobiotic and recalcitrant 
compounds (Tien & Kirk 1984; Ellouze & Sayadi 2016; Sen 
et al. 2016; Singh 2017; Akhtar & Mannan 2020). White 
rot fungi, mainly Agaricomycetes, have been identified 
as a potentially efficient biological tool in the removal of 
synthetic dyes from textile effluents (Wesenberg et al. 2003; 
Ali 2010). Some studies have demonstrated the efficacy of 
Trametes species in the degradation of phenolic compounds 
in effluents from the paper industry, degradation of 
pentachlorophenol and synthetic dyes in textile effluents 
(Rodrígues-Couto 2009, Pinedo-Rivilla et al. 2009; Pandey et 
al. 2017). However, in Brazil, which has a high mycodiversity 
(Forzza et al. 2010; Maia et al. 2015), little is known about 
the potential for degradation and discoloration of the species 
collected in the country (Balan & Monteiro 2001; Lyra et 
al. 2009; Motato-Vasquéz et al. 2016; Araújo et al. 2020).

Thus, the aim of the present study was to test three 
strains of two species of Trametes collected in Northeast 
Brazil for the ability to remove the indigo carmine used in the 
customization of denim and to quantify lignolytic enzymes 
laccase (EC 1.10.3.2), lignin peroxidase (EC 1.11.1.14) and 
manganese peroxidase (EC 1.11.1.13) produced after the 
experiment.

Materials and methods

Microorganism: collection and cultivation conditions
Specimens of Trametes lactinea (Berk.) Sacc. were 

collected on the campus of the Universidade Federal de 
Pernambuco (08°03’07”S 34°56’59”O, Atlantic Forest 
domain) in November 2019, while T. villosa (Sw.) Kreisel 
was collected in the Chapada Diamantina National Park 
(13°14’31”S, 41°40’7” O, Caatinga domain) in March 2015.

For culture, three fragments with a diameter of 5 mm 
were removed from the basidiomata and transferred to 
Petri dishes containing 2 % malt extract supplemented with 
chloramphenicol (20 mg L-1). The plates were kept at 28 °C 
for 7 days or until mycelial development (Cavalcanti 1972; 
Stalpers 1978; Motato-Vásquez et al. 2016).

The cultures obtained were deposited in the Collection of 
Cultures Micoteca URM of the Department of Mycology of the 
Center Biosciences of the Federal University of Pernambuco 
under registration numbers URM8350 (T. lactinea),  
URM8354 (T. lactinea) and URM8022 (T. villosa).

Microorganism: identification
The morphological identification of the basidioma and 

DNA analyses followed the usual for this group (Gomes-
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Silva et al. 2010; Verma et al. 2018; Xavier et al. 2020). The 
resulting ITS and LSU sequences were subjected to BLASTn 
search in NCBI to verify the closest identification match.

Qualitative tests for phenoloxidase
The qualitative analysis of phenoloxidase activity was 

verified using the Bavendamm method, which allows 
observing the production of cellular oxidase such as 
laccase, lignin peroxidase and manganese peroxidase, in 
addition to tyrosine and catechol oxidase (Nobles 1965; 
Melo & Azevedo 2008). In our assay, an agar block with 
diameter of 5 mm was removed from colonies with 7 days of 
cultivation and transferred to the center of the Petri dishes 
with diameter of 90 mm containing solid malt agar medium 
plus tannic acid (0.5 %). The control was prepared under 
the same conditions without tannic acid. All procedures 
were performed under aseptic conditions. After 3 days of 
incubation, the formation of a brown halo was observed 
in the colony reverse, indicating a positive reaction to 
produce phenoloxidases. These halos were measured with 
the aid of a digital caliper. The enzyme index was measured 
through the relationship between the average diameter 
of the degradation zone and the average diameter of the 
colony, expressed in millimeters (Hankin & Anagnostakis 
1975; Silva et al. 2019).

Discoloration tests
The indigo carmine dye was of analytical grade purchased 

from Sigma-Aldrich Corporation, St. Louis, Missouri, USA 
and used at a concentration of 50 mg L-1. The experiment was 
carried out in Erlenmeyer flasks (250 mL) containing 50 mL 
of Kirk medium without sterilization (Kirk & Farrell 1987) 
plus 5 disks of the fungal mycelium with diameter of 5 mm 
grown in 2 % malt extract after 7 days. The vials were kept 
for 120 h at ± 28 °C under static condition; 2 mL aliquots 
were removed from the broth and centrifuged at 1500 rpm 
for 15 min at 4 °C. The percentage of discoloration (D %) 
was calculated according to equation: D % = [(Abscontrol-
Abstest)/Abscontol)] × 100, by which abscontrol (absorbance 
of the control) and abstest (absorbance with fungal 
treatment) denote the percentage of discoloration the at 
610 nm. As a control, Kirk medium was used with the dye 
without fungal inoculum. The experiments were carried 
out in triplicate.

The discolored broth was used to quantify the production 
of the enzymes laccase, manganese peroxidase and lignin 
peroxidase.

Enzymatic assays
The enzymatic activity of the laccase was verified 

by measuring the oxidation of ABTS (2,2′-azino-bis 
(3-ethylbenzthiazoline-6-sulphonic acid) 0.5 mM in 100 mM  
sodium acetate buffer (pH 5) plus the enzyme broth. The 
final volume of the reaction was 1 mL (800 μL of ABTS + 

100 μL of sodium acetate buffer + 100 μL of crude extract). 
Activity was calculated based on ABTS molar absorptivity 
(ε420nm = 36,000 M-1. Cm-1) (Bourbonnais et al. 1997; 
Boran 2019). The activity of lignin peroxidase was verified 
through the oxidation of the mixture composed of 375 
μL of 0.25 M sodium tartrate buffer at pH 3.0; 125 μL of  
10 mM veratryl alcohol; 50 μL of 2 mM hydrogen peroxide 
and 500 μL of enzymatic extract. The reaction was monitored 
on a spectrophotometer at a length of 310 nm (ε310nm = 
9,300 M-1. Cm-1) (Tien & Kirk 1984). The reaction mixture 
for manganese peroxidase (1mL) was composed of 100 μL 
of phenol red (0.01 %), 100 μL of sodium lactate (25 mM), 
50 μL of MnS04 (100 mM), 200 μL of egg albumin (0.5 %), 
50 μL of H202 (100 μM) in 20 mM sodium succinate buffer 
(pH 4.5) and 500 μL of enzymatic extract. The reactions 
were carried out at 30 °C for 5 minutes and stopped with 
the addition of 40μL of 2N NaOH. The absorbance was 
monitored at 610 nm (Kuwahara et al. 1984). A unit of 
enzymatic activity was defined as 1 μmol of the product 
formed per minute. All tests were performed in triplicate.

Statistical analysis
The decolorization test was carried out in triplicate. The 

data were analyzed using analysis of variance (ANOVA) 
with the software Statistical Package for the Social Sciences 
(SPSS) version 24.0. The Tukey-Kramer multiple comparison 
test (honestly significant difference, HSD, P <0.05) or paired 
t test (P <0.05) was also performed to evaluate statistical 
significance between the mean values.

Results and Discussion

Morphological and molecular identification
The specimens were morphologically identified as 

Trametes lactinea (URM8350, URM8354) and T. villosa 
(URM8022). DNA analyses resulted in one ITS sequence 
for each specimen T. lactinea URM8350 (MW578797),  
T. lactinea URM8354 (MW578798) and T. villosa URM8022 
(MW578795) and LSU sequences for both T. lactinea 
URM8350 (MW553720), T. lactinea URM8354 (MW553721) 
and T. villosa URM8022 (MW553718). BLASTn search 
confirmed the original identifications.

Detection of phenoloxidases
All strains tested showed a dark amber halo in three 

days of the experiment, evidenced by the degradation of 
tannic acid and the production of phenoloxidases: diameter 
of 80 mm for T. villosa (URM8022), of 90 mm for T. lactinea 
(URM8350) and of 80 mm for T. lactinea (URM8354). 
According to Bavendamm (1928), these amber-colored 
diffusion zones around the fungal colony are the result of 
the oxidation of phenolic acid produced by extracellular 
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phenoloxidases. The detection of phenoloxidases in 
microorganisms is used as a way to select promising strains 
with the potential for degradation of complex compounds to 
be used in studies of degradation of recalcitrant compounds. 
The production of phenoloxidase complex enzymes is 
associated with the discoloration of synthetic dyes due 
to the similarity in the chemical structure of the dyes and 
the components of lignin (Melo & Azevedo 2008; Arora & 
Sharma 2010; Sen et al. 2016; Singh 2017).

Discoloration of indigo carmine
Trametes villosa (URM8022), T. lactinea (URM8350) and 

T. lactinea were all able to degrade indigo carmine (Fig. 1) at 
high rates (Tab. 1). The results referring to the percentage 
of discoloration were submitted to analysis of variance 
(ANOVA) and the effects were considered significant for p 
< 0.05. All groups showed values of F (26.60) greater than 
the values, indicating that there is a significant difference 
in all experiments performed in the present work.

Species of Trametes are well studied for discoloration 
of various synthetic dyes: T. trogii discolored 97 % of 
the remazol brilliant blue (Zouari-Mechichi et al. 2006);  
T. hirsuta, 94 % indigo carmine, 85 % of Bromophenol Blue, 
41 % of Methyl Orange and 47 % Poly R-478 (Rodríguez-
Couto et al. 2006); T. membranacea, 99.2 % of bromophenol 
blue and 71.8% of methylene blue (Lyra et al. 2009);  

T. trogii, 8 % of indigo carmine in the first hour of experiment 
(Grassi et al. 2011), 69% of Janus Green and 6 % of Poly 
R-478 (Levin et al. 2010); T. pubescens, 59 % of Bemaplex 
Navy M-T and 50 % of Bezaktiv Blue BA (Rodríguez-Couto 
2014); T. versicolor, 44.74% of blue indigo 24 hours after the 
maximum recorded activity of laccase (Lopes et al. 2014) 
and 93.5 % of Remazol Brilliant Yellow 3-GL (Asgher et al. 
2016); T. ljubarskyi, 97.7 % of reactive violet 5 (Goh et al. 
2017); T. villosa, 93.8 % of acid orange 142 (Ortiz-Monsalve 
et al. 2019); and T. polyzona, 90 % at 100 mg L-1, 91 % at 
150mg L-1 and 93 % at 200 mg L-1 of indigo carmine (Uribe-
Arizmendi et al. 2020). However, T. lactinea has not been 
tested before for discoloration of indigo carmine. Also, 
studies of discoloration of indigo carmine using species, 
not only of Trametes, collected in Brazil are scarce.

Lyra et al. (2009) found that T. membranacea collected 
in the Atlantic Forest was able to discolor 99.2 % of the 
bromophenol blue and 71.8 % of the methylene blue in 10 
days, while Lopes et al. (2014) obtained efficient results 
in 44.78 % in 5 days. More recently, Ortiz-Monsalve et 
al. (2019) tested T. villosa, also collected in the Atlantic 
Forest, for discoloration of acid orange 142 and observed 
discoloration of 93.8 % in 264 h of incubation. To date, our 
study is the first report of discoloration of indigo carmine 
and quantification of lignolytic enzymes using species of 
Trametes collected in Brazil.

Figure 1. Discoloration of the indigo carmine dye (50 mg L-1) by three strains of Trametes during 120 h at 28 °C under static condition.

Table 1. Percentage of discoloration and production of laccase (Lac) and manganese peroxidase (MnP) enzymes in units per liter 
(U/L) by Trametes strains after decolorization of indigo carmine dye for 120 h.

Fungi Lac (U/L) MnP (U/L) % Discoloration
T. villosa (URM8022) 27.833 ± 0.031 3.408.065 ± 31.70 96.11 ± 0.86

T. lactinea (URM8350) 0.250 ± 0.002 - 81.40 ± 3.40

T. lactinea (URM8354) 0.750 ± 0.003 3.677.125 ± 25.36 85.09 ± 2.73

(-) Not detected
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Quantification of detected enzymes
In the present study, the production of enzymes was 

detected (Tab. 1). The low enzyme indices observed for 
laccase may be related to the presence of the dye, as found 
by Novotný et al. (2001), who observed that the presence of 
dye decreased the detection rates of laccase and manganese 
peroxidase in a lineage of Irpex lacteus, as well as the mycelial 
development of the fungus. Trombini & Obara-Doi (2012) 
obtained 99.97 % of discoloration using Ganoderma sp. and 
low laccase indices, showing the action of another enzyme 
or other mechanisms involved in the discoloration process. 
Dye discoloration process may involve the participation of 
enzymes as well as the association of other mechanisms such 
as adsorption involved in the discoloration process (Novotný 
et al. 2001; Rodríguez-Couto et al. 2004; Srinivasan & 
Viraraghavan 2010). Several studies indicate that laccase 
acts as the enzyme responsible for discoloration (Levin et 
al. 2004; Rodríguez-Couto et al. 2004; Rodriguéz-Couto et 
al. 2006; Zeng et al. 2011; Yuan et al. 2012; Younes et al. 
2015; Orzechowski et al. 2018; Uribe-Arizmendi et al. 2020). 
However, the participation of manganese peroxidase has also 
been observed in some discoloration studies (Eichlerová et 
al. 2007; Grassi et al. 2011; Li et al. 2015; Zhang et al. 2016).

In the present study, the indices of discoloration of 
indigo carmine were well above the rate observed by 
Lopes et al. (2014), Rodríguez-Couto (2014) and Levin et 
al. (2010). The discoloration time observed in the present 
study was relatively better if compared to other studies. 
Uribe-Arizmendi et al. (2020) carried out their experiments 
in 21 days (T. polyzona, 90 % at 100 mg L-1, 91 % at 150mg L-1 
and 93 % at 200 mg L-1 of indigo carmine), Ortiz-Monsalve 
et al. (2019) in 264 h (T. villosa, 93.8 % of acid orange 142), 
Lyra et al. (2009) in 10 days (T. membranacea, 99.2 % of 
bromophenol blue and 71.8 % of methylene blue), and 
Zouari-Mechichi et al. (2006) after three weeks (T. trogii, 
97 % of the remazol brilliant blue). Generally, studies that 
report good results of dye discoloration in a shorter time are 
those that use optimization of the enzymes of interest with 
addition of the dye after enzymatic production, commonly 
laccase and/or manganese peroxidase (Campos et al. 2001; 
Rodriguez-Couto et al. 2006; Li et al. 2015; Wang et al. 
2019; Xu et al. 2020).

The chemical treatment processes of indigo carmine 
generate potentially dangerous by-products and sludge, 
causing serious environmental pollution. The treatment with 
indigoids using the enzymatic arsenal of fungal species has 
been considered a promising strategy at an environmental 
and economic level (Nyanhongo et al. 2007; Mugdha & 
Usha 2012; Li et al. 2015). Species belonging to the genus 
Trametes can produce multiple isoforms of Lac and MnP 
expressed under different cultivation conditions. However, 
LiP, when observed, is produced in low quantities (Choi 
2021). Lacase contains copper polyphenoloxidases, produces 
four free electrons that react with phenolic and non-

phenolic molecules and is one of the few enzymes capable 
of catalyzing the reduction of four electrons of molecular 
oxygen to water and even produced in small quantities 
can act in the degradation of recalcitrant compounds. 
The catalytic efficacy of Lac and MnP in the removal of 
recalcitrant compounds is due to the high redox potential, 
activity and stability of these enzymes, whether in a raw or 
purified state. However, other enzymes may be involved in 
the discoloration process (Nyanhongo et al. 2007; Campos 
et al. 2016; Zheng et al. 2017; Xu et al. 2020; Choi 2021).

Species of Agaricomycetes that cause white rot have 
an arsenal of degradable lignolytic enzymes that can be 
used in bioremediation processes. These enzymes are 
expressed according to the composition of the substrate 
and the lineage used. The interest in identifying promising 
strains has been increasing as an effort to minimize and/
or treat environments polluted or degraded by anthropic 
action. Knowing the enzymatic potential of neotropical 
species is essential in view of the fungal megadiversity in 
these still unexplored but threatened environments. The 
results obtained here proved that the T. lactinea strains 
(URM8350), T. lactinea (URM8354) e T. villosa (URM8022), 
collected in the Northeast of Brazil, showed a significant 
percentage of indigo carmine discoloration in a short period 
of time and at a low cost. In this work, it was possible to 
detect the production of Lac and MnP after dye removal, 
but LiP was not detected under the conditions of this 
experiment. The present work allowed, therefore, to identify 
promising strains of the genus Trametes that can be used 
to remove synthetic dye from textile effluents. Future 
studies of enzyme optimization and growing conditions 
need to be better studied for use on an industrial scale. The 
understanding of the enzymatic mechanisms acting in the 
discoloration process presented in the present study, needs 
to be elucidated. This study presented the first report of 
use for removing a synthetic dye from the T. lactinea strain. 
The results presented in this work, even if preliminary, 
show the potential of the studied strains. The strains  
T. lactinea (URM8350), T. lactinea (URM8354) and T. villosa 
(URM8022), collected in Northeastern Brazil, showed 
significant percentage of discoloration of indigo carmine 
in a short time and at a low cost and their Lac and MnP 
were efficient in discoloration of the dye. The present work 
allowed, thus, the identification of promising strains of the 
genus Trametes that can be used in the treatment of textile 
effluents. Further studies will be necessary to verify the 
toxicity level of the discoloration product.
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