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ABSTRACT
We discuss and extend to infinite dimensional Hilbert spaces a well-known tensoriality criterion
for linear endomorphisms of the space of smooth vector fiel@&'in
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1 INTRODUCTION

A basic fact in classical differential geometry, called the “Fundamental lemma of differential ge-
ometry" in Besse (1987), is that &ilinear endomorphism of the space of vector fields in an open
set of R”, is a tensor field (of type (1,1)) if and only if is linear with respect to functions. This is
not any more true in infinite dimensions and the aim of this note is to give a contra-example and to
introduce a class of endomorphism for which the criterion holds true. Some basic references for
infinite dimensional differential geometry are Lang (1995) and Abraham et al. (1988).

2 TENSOR FIELDSIN HILBERT SPACES

LetH be areal Hilbert space,(Bl) be the space of bounded linear endomorphisnisafid c H
be an open set. We will denote B§(2) the space of (smooth) vector fieldsSin i.e., the space of
smooth map$ : @ — H; by F(2) we denote the algebra of smooth real valued functior.in
ThenH(2) is a real vector space and &{<2)-module in the obvious way.

We consider a mag : Q — B(H) and, foré € H(S2), we define a vector field (¢) in Q by
settingA(£)(x) = A(x) - £(x). If A(€) is smooth for alk € H($2) then we way thatt is weakly
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smooth; in this cased is aF(Q)-linear endomorphism df/(Q2). Clearly, if A is smooth then it is
also weekly smooth and if di(ill) < +oo the converse holds.
Now we consider an arbitraf-linear mapA : H(2) — H(Q). Recall that:

1. A is atensor field (of type (1, 1)) if there exist a weakly smooth map : @ — B(H) such
that: A(£)(x) = A(x) - £(x), forall x € Q.

2. Aispunctual if, for all £ € H(Q), x € , £(x) = 0 impliesA(¢)(x) = 0.

3. Ais azero-order differential operator if A is F(Q)-linear.

REMARK 1. The F(Q)-linearity implies thatA is a differential operator, i.e., £|y = 0 implies
A(€)|y =0 forallé € H(Q) and for every open subsgt c €.

Conditions (1) and (2) are obviously equivalent and any of them implies condition (3). Itis
well known and easy to prove that if difii) = n < 400 then conditions (1), (2) and (3) are all
equivalent. We briefly recall the proof of the implication£3§2). Let(e;)!_;,n = dim(H) < +oo,
be a basis foH and, givert € H(Q), write§ = >, &e;, where eaclf; € F(2). The F()-
linearity of A implies A(£) = Y, & A(e;) from which condition (2) follows.

The aim of this note is to discuss the relations between conditions (2) and (3) in the case that
H is infinite-dimensional. We start by pointing out that such conditions are no longer equivalent
as the following example shows.

ExampLE 2. LetA : B(H) — H be a continuous non zero linear map whose kernel contains the
closed subspace of compact endomorphisnig.obet:

AE)(x) = A(dE()), & e H(Q), x € Q,

where & (x) € B(H) denotes the differential of the smooth mapt the pointc. We claim thatd
is anF(2)-linear operator. Namely, if € F(2) and if f(x) = 0 for somex € Q then:

d(f&)(x)v = [df (D)v]§(x).

Hence, df&)(x) € B(H) has 1-dimensional range and therefore it is a compact operator and
A(fE)(x) = 0. Now, in general, iff € F(2) andx € Q, we have:

A(fE)x) = A[(f — fFO))E + F(OE](x) = F)AE) (),

which proves thafl is F(2)-linear. On the other hand cannot be punctual becausé it B(H)
is not in the kernel of. then A (£)(0) is not zero.
If we assume the continuity of the operatbmwith respect to pointwise convergenceHis2)
then we can proceed in analogy with the finite dimensional case to prove the implicatio(2§3)
Such assumption, however, is too strong since in all interesting cases directional derivatives appear
in the expression for. Assume, for simplicity, thatl is separable (the general case follow
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substituting sequences for nets). Fix a Hilbert space agisy for H then, foré € H(RQ),
we haveé = ;"f &ei, & € F(RQ), and this series converges pointwise together with all its
directional derivatives. In fact, thieth coordinate operator H > £ — & = (£, ¢;) € Ris linear

and continuous and hence it commutes with directional derivative ope%a{argi(sz) — H(2),
v
v e H.
The above considerations lead to the following:

DEFINITION 3. An operatorA : H(2) — H(S2) is weakly C*°-continuous if for every sequence
(£Mren INH(K2) converging pointwise with all its directional derivativegte (), the sequence
(AE")(x)), . CONVerges tod (§) (x) weakly inH, for all x € Q.

THEOREM 4. If A isweakly C*-continuous, then (3)=(2).

ProoF. Leté € H(Q), x € @ and assumé(x) = 0. We write& = > .~ 1 e, & € F(Q),
where(e; )+ is a Hilbert basis foH. By settinge® = Zf.‘zl £;e; then, as observed abové*) ey
converges pointwise té together with all its directional derivatives. Sindeis weakly C>-
continuous(A(§)(x)),_, converges weakly ta (¢)(x) in H. Finally, by the ()-linearity of
A:

k

AEH(x) =) &@A(e)(x) =0, forallk eN,

i=1

which impliesA(£)(x) = 0 and concludes the proof. d

We will now discuss the result above in an interesting case. We recall lim&aa connection
in H is anR-bilinear map:

V:iHEQ) x H(RQ) > (X, Y) —> VxY € H(Q),
such that:
e Vis F(Q)-linear in the first variable;
e forall X,Y e H(Q), f € F(RQ), the identity:
Vx(fY) = X(/)Y + fVxY,
holds.

An easy modification of Example 2 shows that not all connections are punctual in the first
argument. However, if we give Riemannian metric in Q i.e., a smooth map : 2 — B(H) such
that for allx € ©, g(x) : H — H is self-adjoint and there exists a positive real-valued funckion
such thaf| g(x)v]|| >
defined by the two extra conditions:
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o V¥ — VyX = [X, Y] =dY(X) —dX(Y), forall X,Y e H(Q);
e Xg(Y,Z) = g(VxY, Z) + g(Y, Vx2Z), forall X,Y, Z € H(RQ),

where g(X, Y)(x) = (g(x)X, Y). Observe that, for alt € Q, g(x) defines an inner product I
compatible with its topology. The Levi-Civita connection can be explicitly described byatzeil

formula;
28(VxY, Z) =Xg(Y,Z)+ Yg(Z,X) — Zg(X, Y) M
+2(IX. Y1, Z) +¢(1Z, X1, Y) — g(IY, Z1. X).

It follows from the properties of the Lie brackets, that the expression on the righthand side of (1)
is F(2)-linear inX and inZ. Moreover, since such expression involves only partial derivatives, it
is also weaklyC>-continuous orX andZ. Hence, Theorem 4 implies that the righthand side of
(1) is indeed punctual iX andZ, so thatvVyY is well-defined by (1) and it is punctual .
In general, given a connectioW we can writeVyY = dY(X) + I'(X, Y), wherel :
H(RQ) x H(RQ) — H(RQ) is F(R)-bilinear. ClassicallyI" is known as theChristoffel symbol
of the connection. Using essentially the same argument as above, we conclude that the Christoffel
symbol of the Levi-Civita connection is punctual in both arguments.
Also we can consider thigiemannian curvature:

R(X,Y)Z = VxVyZ — VyVxZ — VixyZ,

whereV denotes the Levi-Civita connectioiR is F(£2)-linear in all arguments. Again, the fact
that R is weaklyC*°-continuous implies, by Theorem 4, th&tis punctual in all its variables.
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RESUMO

Discutimos e estendemos para espacos de Hilbert um critério de tensorialidade para endomorfismos do
espaco dos campos vetoriais &h

Palavras-chave: campos tensoriais, espacos de Hilbert.
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