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ABSTRACT

We discuss and extend to infinite dimensional Hilbert spaces a well-known tensoriality criterion

for linear endomorphisms of the space of smooth vector fields inR
n.
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1 INTRODUCTION

A basic fact in classical differential geometry, called the “Fundamental lemma of differential ge-

ometry" in Besse (1987), is that anR-linear endomorphism of the space of vector fields in an open

set ofRn, is a tensor field (of type (1,1)) if and only if is linear with respect to functions. This is

not any more true in infinite dimensions and the aim of this note is to give a contra-example and to

introduce a class of endomorphism for which the criterion holds true. Some basic references for

infinite dimensional differential geometry are Lang (1995) and Abraham et al. (1988).

2 TENSOR FIELDS IN HILBERT SPACES

LetH be a real Hilbert space, B(H) be the space of bounded linear endomorphisms ofH and� ⊂ H

be an open set. We will denote byH(�) the space of (smooth) vector fields in�, i.e., the space of

smooth mapsξ : � → H; by F(�) we denote the algebra of smooth real valued functions in�.

ThenH(�) is a real vector space and anF(�)-module in the obvious way.

We consider a mapA : � → B(H) and, forξ ∈ H(�), we define a vector field̃A(ξ) in � by

settingÃ(ξ)(x) = A(x) · ξ(x). If Ã(ξ) is smooth for allξ ∈ H(�) then we way thatA is weakly
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smooth; in this caseÃ is aF(�)-linear endomorphism ofH(�). Clearly, ifA is smooth then it is

also weekly smooth and if dim(H) < +∞ the converse holds.

Now we consider an arbitraryR-linear mapÃ : H(�) → H(�). Recall that:

1. Ã is a tensor field (of type (1, 1)) if there exist a weakly smooth mapA : � → B(H) such

that: Ã(ξ)(x) = A(x) · ξ(x), for all x ∈ �.

2. Ã is punctual if, for all ξ ∈ H(�), x ∈ �, ξ(x) = 0 impliesÃ(ξ)(x) = 0.

3. Ã is azero-order differential operator if Ã is F(�)-linear.

Remark 1. TheF(�)-linearity implies thatÃ is a differential operator, i.e., ξ |U = 0 implies

Ã(ξ)|U = 0 for all ξ ∈ H(�) and for every open subsetU ⊂ �.

Conditions (1) and (2) are obviously equivalent and any of them implies condition (3). It is

well known and easy to prove that if dim(H) = n < +∞ then conditions (1), (2) and (3) are all

equivalent. We briefly recall the proof of the implication (3)⇒(2). Let(ei)
n
i=1,n = dim(H) < +∞,

be a basis forH and, givenξ ∈ H(�), write ξ = ∑n
i=1 ξiei , where eachξi ∈ F(�). TheF(�)-

linearity of Ã impliesÃ(ξ) = ∑n
i=1 ξiÃ(ei) from which condition (2) follows.

The aim of this note is to discuss the relations between conditions (2) and (3) in the case that

H is infinite-dimensional. We start by pointing out that such conditions are no longer equivalent

as the following example shows.

Example 2. Letλ : B(H) → H be a continuous non zero linear map whose kernel contains the

closed subspace of compact endomorphisms ofH. Set:

Ã(ξ)(x) = λ
(
dξ(x)

)
, ξ ∈ H(�), x ∈ �,

where dξ(x) ∈ B(H) denotes the differential of the smooth mapξ at the pointx. We claim thatÃ

is anF(�)-linear operator. Namely, iff ∈ F(�) and iff (x) = 0 for somex ∈ � then:

d(f ξ)(x)v = [
df (x)v

]
ξ(x).

Hence, d(f ξ)(x) ∈ B(H) has 1-dimensional range and therefore it is a compact operator and

Ã(f ξ)(x) = 0. Now, in general, iff ∈ F(�) andx ∈ �, we have:

Ã(f ξ)(x) = Ã
[(

f − f (x)
)
ξ + f (x)ξ

]
(x) = f (x)Ã(ξ)(x),

which proves that̃A is F(�)-linear. On the other hand̃A cannot be punctual because ifξ ∈ B(H)

is not in the kernel ofλ thenÃ(ξ)(0) is not zero.

If we assume the continuity of the operatorÃ with respect to pointwise convergence inH(�)

then we can proceed in analogy with the finite dimensional case to prove the implication (3)⇒(2).

Such assumption, however, is too strong since in all interesting cases directional derivatives appear

in the expression forÃ. Assume, for simplicity, thatH is separable (the general case follow
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substituting sequences for nets). Fix a Hilbert space basis(ei)
+∞
i=1 for H then, forξ ∈ H(�),

we haveξ = ∑+∞
i=1 ξiei , ξi ∈ F(�), and this series converges pointwise together with all its

directional derivatives. In fact, thei-th coordinate operator H 
 ξ �→ ξi = 〈ξ, ei〉 ∈ R is linear

and continuous and hence it commutes with directional derivative operators
∂

∂v
: H(�) → H(�),

v ∈ H.

The above considerations lead to the following:

Definition 3. An operatorÃ : H(�) → H(�) is weakly C∞-continuous if for every sequence

(ξ k)k∈N in H(�) converging pointwise with all its directional derivatives toξ ∈ H(�), the sequence(
Ã(ξ k)(x)

)
k∈N

converges toÃ(ξ)(x) weakly inH, for all x ∈ �.

Theorem 4. If Ã is weakly C∞-continuous, then (3)⇒(2).

Proof. Let ξ ∈ H(�), x ∈ � and assumeξ(x) = 0. We writeξ = ∑+∞
i=1 ξiei , ξi ∈ F(�),

where(ei)
+∞
i=1 is a Hilbert basis forH. By settingξk = ∑k

i=1 ξiei then, as observed above,(ξ k)k∈N

converges pointwise toξ together with all its directional derivatives. SincẽA is weaklyC∞-

continuous,
(
Ã(ξ k)(x)

)
k∈N

converges weakly tõA(ξ)(x) in H. Finally, by theF(�)-linearity of

Ã:

Ã(ξ k)(x) =
k∑

i=1

ξi(x)Ã(ei)(x) = 0, for all k ∈ N,

which impliesÃ(ξ)(x) = 0 and concludes the proof. �

We will now discuss the result above in an interesting case. We recall that alinear connection

in H is anR-bilinear map:

∇ : H(�) × H(�) 
 (X, Y ) �−→ ∇XY ∈ H(�),

such that:

• ∇ is F(�)-linear in the first variable;

• for all X, Y ∈ H(�), f ∈ F(�), the identity:

∇X(f Y ) = X(f )Y + f ∇XY,

holds.

An easy modification of Example 2 shows that not all connections are punctual in the first

argument. However, if we give aRiemannian metric in � i.e., a smooth mapg : � → B(H) such

that for allx ∈ �, g(x) : H → H is self-adjoint and there exists a positive real-valued functionK

such that
∥∥g(x)v

∥∥ ≥ K(x)‖v‖, we have a special connection, theLevi-Civita connection, uniquely

defined by the two extra conditions:
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• ∇XY − ∇Y X = [X, Y ] = dY (X) − dX(Y ), for all X, Y ∈ H(�);

• Xg(Y, Z) = g(∇XY, Z) + g(Y, ∇XZ), for all X, Y, Z ∈ H(�),

where g(X, Y )(x) = 〈g(x)X, Y 〉. Observe that, for allx ∈ �, g(x) defines an inner product inH

compatible with its topology. The Levi-Civita connection can be explicitly described by theKoszul

formula:

2g(∇XY, Z) =Xg(Y, Z) + Yg(Z, X) − Zg(X, Y )

+ g
([X, Y ], Z) + g

([Z, X], Y ) − g
([Y, Z], X)

.
(1)

It follows from the properties of the Lie brackets, that the expression on the righthand side of (1)

is F(�)-linear inX and inZ. Moreover, since such expression involves only partial derivatives, it

is also weaklyC∞-continuous onX andZ. Hence, Theorem 4 implies that the righthand side of

(1) is indeed punctual inX andZ, so that∇XY is well-defined by (1) and it is punctual inX.

In general, given a connection∇ we can write∇XY = dY (X) + �(X, Y ), where� :
H(�) × H(�) → H(�) is F(�)-bilinear. Classically,� is known as theChristoffel symbol

of the connection. Using essentially the same argument as above, we conclude that the Christoffel

symbol of the Levi-Civita connection is punctual in both arguments.

Also we can consider theRiemannian curvature:

R(X, Y )Z = ∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z,

where∇ denotes the Levi-Civita connection.R is F(�)-linear in all arguments. Again, the fact

thatR is weaklyC∞-continuous implies, by Theorem 4, thatR is punctual in all its variables.
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RESUMO

Discutimos e estendemos para espaços de Hilbert um critério de tensorialidade para endomorfismos do

espaço dos campos vetoriais emR
n.
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