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ABSTRACT

Toxoplasma gondii strains displaying the Type I/III genotype are associated with acquired ocular toxoplasmosis in
humans. Here, we used a mice model to characterize some immunological mechanisms involved in host resistance to

infection with such strains. We have chosen the Type I/III strains D8, G2 and P-Br, which cause a chronic infection

in mice that resembles human toxoplamosis. Mice deficient of molecules MyD88, IFN-γ , and IL-12 were susceptible

to all three parasite strains. This finding indicates the importance of innate mechanisms in controlling infection. On

the other hand, MHC haplotype did not influenced resistance/susceptibility; since mice lineages displaying a same

genetic background but different MHC haplotypes (H2b or H2d) developed similar mortality and cyst numbers after

infection with those strains. In contrast, the C57BL/6 genetic background, and not MHC haplotype, was critical for

development of intestinal inflammation caused by any of the studied strains. Finally, regarding effector mechanisms,

we observed that B and CD8+ T lymphocytes controlled survival, whereas the inducible nitric oxide synthase influenced

cyst numbers in brains of mice infected with Type I/III strains. These findings are relevant to further understanding of

the immunologic mechanisms involved in host protection and pathogenesis during infection with T. gondii.
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INTRODUCTION

Toxoplasma gondii is an obligate intracellular coccid-
ian belonging to the phylum Apicomplexa. The parasite
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is globally distributed and has been described to infect

more than 30 species of birds and 300 species of mam-

mals, including humans (Dubey et al. 2002). Possibly

one-third of the world’s human population is infected

with T. gondii (Dubey 1998, Tenter et al. 2000). Infec-
tion with the parasite occurs via three main routes: con-
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genitally by transplacental transmission of tachyzoites;

ingestion of food or water contaminated with oocysts

shed in feces of infected cats (Bahia-Oliveira et al. 2003,

de Moura et al. 2006); or by ingestion of raw or un-

dercooked meat containing tissue cysts (Dubey 1996).

Infection is asymptomatic in most individuals, whereas

severe pathology and lethality due to toxoplasmosis is a

common finding in congenitally infected or immunode-

ficient patients (Desmonts and Couvreur 1974). In ad-

dition, toxoplasmosis is one of the most common causes

of infectious uveitis in both immunocompetent and im-

munocompromised persons (Holland 1999, Colombo et

al. 2005). Importantly, some studies indicate that toxo-

plasmic retinocoroiditis and ocular disease is frequently

found in cases of acquired toxoplasmosis (Glasner et al.

1992). Variation in the clinical presentation and severity

of disease in susceptible persons has been attributed to

several factors, including the genetic heterogeneity of the

host and the genotype of the infective parasite (Sibley and

Boothroyd 1992, Howe and Sibley 1995, Holland 1999).

Studies performed with strains of T. gondii isolated
in North America and Europe showed that they were

morphologically similar yet could be grouped into three

distinct clonal lineages by isoenzymes or DNA restric-

tion fragment length polymorphisms (Darde et al. 1992,

Sibley and Boothroyd 1992, Sibley et al. 1992, Howe et

al. 1997). The structure of T. gondii population in those
geographic areas is clonal, and most strains fall into one

of the three categories denominated Type I, Type II and

Type III lineages (Sibley and Boothroyd 1992, Howe

and Sibley 1995). The three clonal types are apparently

not minor or random polymorphic states of any phe-

notypic consequence: Type I lineage strains are highly

virulent in outbred mice and perhaps humans (Grigg et

al. 2001a), whereas type II and III lineage strains are

relatively less virulent (Sibley et al. 1992, Howe et al.

1996, 1997). A small percentage of strains are recombi-

nant between two of three parasite lineages, and vary

in terms of their virulence phenotype in mice (Grigg

et al. 2001a). In North America and Europe, Type II

strains are most common in human toxoplasmosis and

chronic infections in food animals (Howe and Sibley

1995). Importantly, while type I strains are relatively

rare in animals, they occur with increasing frequency in

human congenital toxoplasmosis (Fuentes et al. 2001)

and ocular disease (Grigg et al. 2001a), whereas re-

combinant Type I/III strain are more often found in pa-

tients with ocular toxoplasmosis (Grigg et al. 2001b).

In Brazil, T. gondii isolates present high genetic variabil-
ity, as demonstrated by recent studies on multilocus PCR

RFLP, and the parasite population has an epidemic struc-

ture with a few expanded clonal lineages (Ferreira Ade

et al. 2006, Pena et al., in press).

Immunogenetic studies provide powerful tools for

understanding protective and pathogenic mechanisms

in such infectious disease (McLeod et al. 1995, 1996,

Mack et al. 1999). Specifically, in the case of T. gondii
infection, genes located in different regions of the host

genome have been implicated in resistance to infection.

Particularly, major histocompatibility (MHC) alleles are

important determinants of resistance and susceptibility

to early infection, as well as controllers of cyst num-

bers and encephalitis at later stages of infection with T.
gondii, both in mice and humans (McLeod et al. 1989a,
Brown and McLeod 1990, Brown et al. 1994, Black-

well et al. 1993, Johnson et al. 2002a, b). These studies

are confirmed by the critical role of CD8+ T as well as

CD4+ T cells in host resistance to toxoplasmosis (Brown

and McLeod 1990, Suzuki et al. 1991, Gazzinelli et al.

1992). In addition, various cytokines have shown to be

critical in host resistance to T. gondii infection (Den-
kers and Gazzinelli 1998). In the acute phase of toxo-

plasmosis, T. gondii tachyzoites trigger the synthesis of
IL-12 and other co-stimulatory cytokines (e.g. TNF-α),

which initiate the synthesis of IFN-γ by “natural killer”

(NK) cells and CD4+ αβ T lymphocytes (Gazzinelli et

al. 1993b, 1994b, Hunter et al. 1994, Cai et al. 2000).

IFN-γ and TNF-α remain critical to host resistance to

chronic toxoplasmosis, probably by their ability to ac-

tivate the inducible nitric oxide synthase (iNOS) and

production of reactive nitrogen intermediates (RNI) that

exert both microbicidal and microbiostatic effects.

We have recently reported a non-clonal distribu-

tion of natural recombinant Type I/III strains, in differ-

ent geographic areas of Brazil, where acquired ocular

toxoplasmosis (up to 20% of the infected population)

is commonly found among patients with chronic toxo-

plasmosis (Glasner et al. 1992, Dubey et al. 2002, Fux

et al. 2003, Ferreira Ade et al. 2004, 2006, Portela et

al. 2004). Importantly, we and others were unable to iso-
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late the avirulent Type II clonotype T. gondii strains in
Brazilian territory, where approximately 80% of all iso-

lated strains were virulent (Dubey et al. 2002, Ferreira

Ade et al. 2004, 2006). However, most of the immuno-

logical studies concerning T. gondii infections have been
performedwith theME49, a Type II strain. In the present

study, we evaluated the role of different immunological

compartments on host resistance to three different re-

combinant Type I/III strains of T. gondii, which presents
low virulence during acute infection and are cystogenic

during chronic phase, thus resembling human toxoplas-

mosis. Our results indicate that components of innate

immunity are critical in a similar manner in infections

with Type II or the Type I/III strains of T. gondii studied
here. In contrast, MHC haplotypes H2b and H2d were

not determinants of mice susceptibility and resistance to

Type I/III strains, as previously shown for Type II strains

of T. gondii (Brown and McLeod 1990).

MATERIALS AND METHODS

ANIMALS

BALB/c, C57BL/6, MyD88-/-, TLR2-/-, TLR4-/-,

TLR9-/-, IL-12-/-, IFN-γ -/-, iNOS-/-, CD8-/-, Igµ-

chain-/-, congenic CB10H2 and C57BL/KsJ and out-

breed Swiss Webster mice were housed at the animal

facilities of Institute of Biological Sciences (ICB), of

the Federal University of Minas Gerais (UFMG), Brazil.

Congenic and knockout mice were bred as homozygotes,

and knockout mice were backcrossed to at least 8 gen-

erations into the genetic background of C57BL/6. All

animals were 8 weeks old, and were managed accord-

ing to institutional standard guidelines.

PARASITE STRAINS

Strains BV, EGS, EFP (virulent), D8, G2 and P-Br (avir-

ulent) were used as representative of Type I/III isolates,

whereas strain ME49 was used as a representative of a

Type II strain. Strains P-Br and D8 were isolated from

dogs, BV and G2 were isolated from goats, and EGS and

EFP were isolated from congenitally infected humans

(Jamra and Vieira 1991, Fux et al. 2003, Ferreira Ade

et al. 2004). ME49 was isolated from a sheep (Lunde

and Jacobs 1983). Each strain was maintained by suc-

cessive inoculation of free tachyzoite and/or tissue cysts

in female Swiss Webster mice. Cyst and/or tachyzoites

obtained from reservoir mice were used to infect exper-

imental animals.

EXPERIMENTAL INFECTIONS

Experimental infections with tachyzoites fromBV, EGS,

EFP, D8, G2 and P-Br were performed as described: free

tachyzoites were harvested from Swiss Webster reser-

voirs, 5 to 7 days after infection, by peritoneal washing

with PBS. Tachyzoite inoculums were adjusted to 1, 10,

100 and 1,000 cells per 100µL PBS and administered to

mice by i.p. injection. Survival was followed thereafter

in groups submitted to each tachyzoite dose. Experi-

mental infections with cysts of strains D8, G2, P-Br and

ME49 were performed as follows: brains were collected

from Swiss Webster reservoirs, 60 days after infection,

and homogenized in 1mL PBS. Cysts numbers were de-

termined by microscopic analysis of 10µL aliquots of

brain homogenates, in duplicates. Inoculums were ad-

justed to 4, 20 or 100 cysts per 200µL and administered

orally. Survivors were killed 60 days after infection for

determination of brain cyst loads, as described above.

HISTOPATHOLOGY

Histological examination was carried out in small intes-

tine samples obtained 7 days after infectionwith different

T. gondii strains. Small intestine samples were embed-
ded in paraffin and cut in 4µm-width sections, which

were stained with Hematoxylin-Eosin dye. Slides con-

taining 2 sections of each intestinal sample were ana-

lyzed under light microscope for presence of inflamma-

tory infiltrates, and scored from 1 (+) to 4 (+ + + +) based

on the intensity of pathological changes.

FLOW CYTOMETRY

Spleen homogenates were obtained individually from

infected or non-infected mice (3 animals per group) and

red blood cells were disrupted with ACK lysis buffer.

A total of 2 × 106 purified splenocytes were stained

with 15µl of optimal concentrations of FITC-conjugated

anti-Vβ 8, 6 or 5 specific monoclonal antibodies (BD

Pharmingen, San Diego, CA) in combination with PE-

conjugated anti-CD4+ or CD8+ antibodies (BD Phar-

mingen). Analysis of stained cells was performed in

FACScan� (BD Biosciences, San Jose, CA) with Cell
Quest� software (BD Biosciences).
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STATISTICAL ANALYSIS

To compare brain cyst numbers obtained in different

mice lineages infected with different T. gondii strains
we used ANOVA test, followed by Tukey multiple com-

parisons, when appropriate. Otherwise, comparisons

were performed by Kruskal-Wallis test, followed by

Dunn’s multiple comparisons. To compare data between

mice of the same lineage infected with different doses (4

or 20 cysts) of one specific T. gondii strain we performed
Student’s T (for parametric data) or Mann-Whitney’s

test (for non-parametric data). Comparison of survival

data was performed by Kaplan-Meir test. All data were

tested for significance in MINITAB software, version

13.0, and tests with p< 0.05 were considered statisti-

cally significant.

RESULTS

DIFFERENT VIRULENCE OF NATURAL RECOMBINANT

TYPE I/III STRAINS OF T. gondii

Strains BV, EGS, EFP, D8, G2 and P-Br were isolated

in Minas Gerais and São Paulo States, in Brazil, and

characterized as recombinant Type I/III strains (Fux

et al. 2003, Ferreira Ade et al. 2004). Results of ex-

perimental infections of BALB/c with different tachy-

zoite doses of each strain are shown in Figure 1. All

animals infected with BV, EGS and EFP died, indepen-

dently from inoculum dose. On the other hand, all mice

infected with low dose (1 tachyzoite) of EFP survived.

In this case, infection was confirmed by detection of

specific anti T. gondii antibodies in ELISA and West-
ern Blot (data not shown). Thus, BV, EGS and EFP

were classified as highly virulent, virulent and of inter-

mediate virulence, respectively. In contrast, all animals

infected with D8, G2, and P-Br survived (Fig. 1), and

those strains were considered to be avirulent.

ROLE OF TOLL-LIKE RECEPTORS (TLRS) ON INNATE

IMMUNE RESPONSE AND HOST RESISTANCE TO

INFECTION WITH TYPE I/III STRAINS OF T. gondii

Initially, we infected MyD88-/-, TLR2-/-, TLR4-/- and

TLR9-/- mice with either of the Type I/III strains of T.
gondii. In addition, we infected the mice devoid of func-
tional CD14, a co-receptor required for optimal TLR2

and TLR4 functions. Mice received an oral dose of 20

cysts of P-Br, D8 and G2 and, after 45 days, survivors

were sacrificed for determination of brain cysts num-

bers as an indicator of host resistance to infection. As

previously shown for strain ME49 (Type II) (Scanga et

al. 2002), MyD88-/- mice were highly susceptible to all

Type I/III strains tested (not shown). In contrast, wewere

unable to detect any change in host resistance/suscept-

ibility to infection with Type I/III strains in single TLR

(TLR2, TLR4 or TLR9) or CD14 knockout mice (not

shown). An early study suggested that increasing infec-

tive doses ofME49 could lead to a susceptible phenotype

in TLR2-/- (Mun et al. 2003). Thus, we decided to use

100 cysts of P-Br as inoculums for different knockout

mice. Results were identical to those obtained with 20

cysts, i.e., enhanced susceptibility of MyD88-/- mice,

but not of TLR2-/-, TLR4-/-, TLR9-/- or CD14-/- mice

(Table I).

TABLE I

Number of brain cysts and survival of mice after
per-oral infection with P-Br strain of T. gondii.

P-Br Strain (100 cysts)

Mice strain Survival Number of brain cysts

C57BL/6 a 91,6% f 444± 186 f
CD14 b 100% f 170± 20 f
TLR2 c 100% f 233± 33 f
TLR4 d 90,9% f 255± 95 f
TLR9 e 83.3% f 260± 248 f
MyD88 f 27,2% abcde 2633± 752, 2 abcde

Brain cyst loads were evaluated 40 days after infection. Small

letters (a-f) indicate statistically significant difference between

mice strains. Data from one representative experiment. Experi-

ment was repeated two times with similar results.

MyD88 is an adaptor of all TLR (except TLR3)

functions, and is critical for induction of pro-inflammat-

ory cytokines, including IL-12. Importantly, IL-12 is

the initiator for IFN-γ synthesis by NK cells and T lym-

phocytes, and thus to host resistance to T. gondii. To
further analyze the importance of these pro-inflammat-

ory cytokines during initial stages of infection, we in-

oculated IL-12-/- and INF-γ -/- mice with either 04 or

20 cysts of P-Br, D8 and G2 strains and the survival

was monitored over 45 days period. Infection of IL-

12-/- and INF-γ -/- mice, even with the lower dose (4

cysts), resulted in 100% mortality around 10-20 days

post-infection (Fig. 2).
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Fig. 1 – Survival of BALB/c mice infected with intra-peritoneal injections of 1, 10,

102, or 103 tachyzoites from highly virulent (BV), virulent (EGS), intermediate virulent

(EFP) or avirulent (D8, G2 and P-Br) Type I/III strains of T. gondii. Data from one
representative experiment. Experiment was repeated two times with similar results.

INFLUENCE OF MHC HAPLOTYPE IN CYST NUMBERS OF

MICE INFECTED WITH TYPE I/III STRAINS OF T. gondii

We have investigated the influence of MHC haplotype in

controlling cyst numbers and mouse resistance to Type

I/III strains of T. gondii. To achieve this purpose, we
selected mice lineages which display H2 haplotypes “b”

and “d”, whichwere previously demonstrated asmarkers

of, respectively, susceptibility and resistance to infection

with T. gondii. Mice lineages involved in this experi-
ment were parental BALB/c (H2d) and C57BL/6 (H2b)

or the derivative congenic strains CB10-H2 (BALB/c ge-

netic background with H2b haplotype) and C57BL/KsJ

(C57BL/6 genetic background with H2d haplotype). Re-

sults (Table II) confirm previous observations that mice

strains expressing haplotype “d” are more resistant to

ME49 thanmice that express “b”haplotype, sinceBALB/

c and C57BL/KsJ developed fewer brain cysts after 45

days of infection. Nevertheless, this feature was not ob-

served in infections with D8 and G2, which induced

similar cyst burdens and low mortality in the different

mouse congenic strains analyzed. It is noteworthy, that

theC57BL/6 genetic background, regardless of theMHC

haplotype, conferred resistance to cyst formation, when

infected with P-Br strain (Table II).

To depict the immune mechanisms involved in sus-

ceptibility/resistance of different mice to T. gondii, we
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Fig. 2 – Survival of IFN-γ -/-, IL-12-/- and C57BL/6 mice after per-oral infection with 4 cysts of Type

I/III strains D8, G2 and P-Br of T. gondii. Data from one representative experiment. Experiment was
repeated two times with similar results.

studied the pattern of antibody response, and compared

IgG1 versus IgG2a levels in infected animals. We ob-

served that, independently of the T. gondii strain used in
infection, antibody responses were consistent within a

similar mouse genetic background. BALB/c and CB10-

H2 produced high IgG1:IgG2a ratios, whereas the same

parameter was smaller in the C57BL/6 and C57BL/KsJ,

indicating a stronger Th1 response in the latter mice

(data not shown). Consistently, the intense intestinal in-

flammatory process associated to acute toxoplasmosis –

which is dependent on strong Th1 responses, with high

levels of IFN-γ and RNI – was only observed in mice

of the C57BL/6 genetic background (Table III). The H2d

haplotype expressed by the C57BL/KsJ strain resulted in

increased intestinal inflammation in mice infected with

D8 and P-Br strains when compared to C57BL/6 mice

that express the H2b haplotype.

Usage of specific TCR Vβ8 chain was previously

indicated as a mechanism of resistance to severe Toxo-

plasmic Encephalitis in BALB/c. On the other hand, sus-

ceptible CBAmice were demonstrated to activate higher

levels of Vβ6 bearing T cells after infection with T.
gondii, and develop greater inflammation and brain cysts
than BALB/c (Wang et al. 2005). We then decided to

investigate the frequency of CD4+ T and CD8+ T cells

expressingVβ8, Vβ6 andVβ5, inBALB/c andC57BL/6

mice infected with P-Br or ME49. According to results

shown in Figure 3 and Table IV, a higher frequency of

CD4+ and CD8+ T lymphocytes expressing Vβ8 is nat-

urally found in BALB/c and C57BL/6 mice. However,
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TABLE III

Inflammatory lesions on small intestine of mice infected with
different strains of T. gondii.

Toxoplasma gondii strain (20 cysts)

Mice strain G2 D8 P-Br ME49

Inflammatory score –

C57BL/6 genetic background

H2b (C57BL/6) ++ + + ++++

H2d (C57BL/Ks) ++ +++ ++ +++

Inflammatory score –

BALB/c genetic background

H2b (CB10-H2) + + + +

H2d (BALB/c) + + + +

Two samples from each mouse were examined and scored for pathologic

changes. Scores: (+), mild; (++), moderate; (+++), severe; (++++), very severe.

no alteration of frequency of any specific Vβ family was

detected after infection with either T. gondii strain.

EFFECTOR MECHANISMS IN CONTROL OF CYST NUMBERS

AND HOST RESISTANCE TO INFECTION WITH TYPE I/III

STRAINS OF T. gondii

Finally, we decided to investigate the role of different ef-

fector mechanisms in control of cyst numbers and hosts

resistance to Type I/III strains of T. gondii. We infected
CD8-/-, Igµ-chain-/- (B-/-) and iNOS-/- mice with 4

(not shown) and 20 cysts of D8, G2 and P-Br strains

(Table V). Our results indicate that CD8+ T cells and,

in a lesser extent, B lymphocytes were important com-

ponents controlling survival. However, regarding cyst

formation, it appears that CD8+ T and B cells, individu-

ally, are not the major mediators of protection. Infection

of iNOS -/- mice resulted in 40%, 80% and 40% survival

with G2, D8 and P-Br strains, respectively. Further, the

remaining iNOS-/- survivors developed high cyst bur-

dens (Table V). These findings suggest that IFN-γ pro-

duced by CD4+ T cells and production of RNI is indeed

a key pathway for controlling cyst numbers in the CNS

of mice infected with Type I/III strains.

DISCUSSION

Although T. gondii is regarded as the only species in
genus Toxoplasma, genetically different strains of the

parasite have been described. The genetic variance was

already extensively assessed in samples of T. gondii
found mainly in Europe and North America. Accord-

ing to genetic markers and virulence during acute infec-

tion in mice those strains have been divided into Type

I, Type II and Type III groups (Sibley and Boothroyd

1992, Howe and Sibley 1995). Different studies have

illustrated the high frequency of Type I and III, and the

absence of Type II, isolates in Brazil (Dubey et al. 2002,

2003a, b, 2004). A previous study of our group revealed

an unusually high frequency in Brazil (100% of isolates

analyzed) of strains that shared Type I and III genetic

markers (Fux et al. 2003). Such strains were separately

classified as natural recombinant Type I/III, and amongst

them, 85% displayed some degree of virulence and only

15% were avirulent. The highly virulent strains were

more closely related to Type I genotype (Ferreira Ade

et al. 2006). These findings contrast with those from

North America and Europe, where most isolates asso-

ciated to human infections are avirulent Type II (Sibley

and Boothroyd 1992, Howe and Sibley 1995). Impor-

tantly, Grigg and colleagues (Grigg et al. 2001b) also

found in North America an unexpected high occurrence

of Type I, and recombinant Type I/III strains in patients

with ocular toxoplasmosis. A high prevalence of ocular

toxoplasmosis is observed in Brazilian populations, and

most cases are attributed to acquired infection (Glasner
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Fig. 3 – Frequency of different TCR Vβ chains in CD8+ T cells from animals infected with T. gondii. Splenocytes were obtained 2-4 weeks after

oral infection with tissue cysts. Cells were double-stained with monoclonal antibodies specific for CD8+ molecule and different Vβ chains. NI,

non-infected mice. Results of one representative experiment. Experiments were repeated independently four times.

et al. 1992, Holland 1999, Silveira et al. 2001, Portela et

al. 2004). Although speculative, we suggest that these

occurrences could be attributed in part to the dominance

of Type I/III virulent strains in our territory (Glasner et

al. 1992, Silveira et al. 2001, Portela et al. 2004).

In addition to intrinsic parasite virulence factors,

susceptibility to Toxoplasma is determined by host ge-

netic characteristics and environmental factors, such as

co-infections, including HIV, that affect the immuno-

logical status of the host. It was observed that humans

infected with T. gondii have a parasite-specific Th1-po-
larized cell response, characterized by strong IFN-γ

production when peripheral blood mononuclear cells

(PBMCs) are stimulated with parasite antigens (Gazzi-

nelli et al. 1995) and high levels of anti-parasite specific

IgG1 and IgG3 (Giraldo et al. 2000, Portela et al. 2004).

Further, presence of primed CD4+ T helper and CD8+

cytotoxic T cells have been demonstrated in PBMCs

from patients with chronic toxoplasmosis (Hunter et al.

1996). However, decreased cellular responses to T. gon-
dii antigens, including lower IFN-γ and IL-2 secretion,
occur in congenitally infected patients (McLeod et al.

1985, 1990, Yamamoto et al. 2000), and individuals

co-infected with HIV (Hunter et al. 1996). In latter

case, weaker responses were associated with develop-

ment of toxoplasmic encephalitis. Regarding the influ-

ence of host genetics over toxoplasmosis, it is known

the MHC contribution to disease development. It was

reported, for example, an increased frequency of MHC

HLA-DQ3 in infants with hydrocephalus lesions (Mack

et al. 1999). A lower than expected homozygosity also

suggested that this allele increased susceptibility to tox-

oplasmosis. Another study indicated that AIDS patients

with HLA-DQ3 haplotype more often experienced reac-

tivation of chronic toxoplasmosis (Suzuki et al. 1996).

Studies with mice expressing transgenic human class II

MHC alleles showed that HLA-DQ1was associatedwith

lower parasite burden and pathology comparing to mice

with HLA-DQ3 (Mack et al. 1999). Further, mice ex-

pressing human class I molecules HLA-DB27 or HLA-

Cw3 had enhanced resistance to infection (Brown et al.

1994). Here we employed a murine model of toxoplas-

mosis to characterize the role of different immunologi-

cal compartments on resistance to natural recombinant

Type I/III strains of T. gondii, whose infection in mice
resembles human toxoplasmosis.

Inmice, cytokines such as IL-12, TNF-α and IFN-γ

and reactive nitrogen intermediates (RNI) are mediators
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TABLE IV

Analysis of the frequency of different TCR Vβ chains in T cells from mice infected with P-Br or ME49 strains of T. gondii.

BALB/c C57BL/6

Non-infected ME49 P-Br Non-Infected ME49 P-Br

CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8

Vβ8
8,2 5,9 4,3 4,8 5,6 4,6 4,2 3,0 4,1 3,3 3,4 3,3

(1,94) (0,66) (0,58) (0,47) (1,12) (0,45) (0,93) (0,44) (0,92) (1,19) (0,55) (1,21)

Vβ6
3,7 2,2 2,3 1,7 2,2 1,7 1,6 1,6 1,6 2,1 1,5 1,8

(0,42) (0,34) (0,79) (0,78) (1,06) (0,45) (0,17) (1,02) (0,30) (0,97) (0,28) (0,43)

Vβ5
0,5 0,5 0,2 0,2 0,2 0,3 0,7 1,6 0,8 1,9 0,7 1,4

(0,33) (0,37) (0,14) (0,19) (0,14) (0,51) (0,17) (0,25) (0,16) (0,50) (0,25) (0,22)

Values correspond to mean (± standard deviation) percentage of T cells showing positive staining with monoclonal antibodies specific
to each Vβ. Results of one representative experiment. Experiment was repeated independently four times, with similar results.

TABLE V

Brain cyst numbers and survival of mice infected with different Type I/III strains of T. gondii.

T. gondii strain (20 cysts)
G2 H D8 I P-Br J

Mice strain Survival Brain cysts Survival Brain cysts Survival Brain cysts

C57BL/6 a 100% bd 2290±765 Jc 100% bc 1666± 709 Jbc 100% bd 220± 92 HId
CD8-/- b 0% Jacd * 20% ad 550± 71 ad 58,3% Ha 414± 254 d
B-/- c 60% b 833± 427 IJad 20% ad 250± 141 Had 62,5% 175± 155 d H

iNOS-/- d 40% Iab 2500±1273 c 80% HJbc 1300±594 Jbc 40% Ia 4100±0 Iabc

Number of brain cysts was evaluated 45 day after infection. Small letters (a-d) indicate statistically significant difference

between mice strains. Capital letters (H-J) indicate statistically significant difference between T. gondii strains. (*) Indicate
that all animals succumbed at 45 days. Data from one representative experiment. Experiments were repeated two times

with similar results.

of resistance to T. gondii (Suzuki et al. 1989, Gazzi-
nelli et al. 1991, 1992, 1993a, b, 1994a, Hayashi et al.

1996a, b, Scharton-Kersten et al. 1996, 1997, Denkers

and Gazzinelli 1998). Nevertheless, pathology associ-

ated with excessive stimulation of those pro-inflammat-

ory cytokines also occur during acute toxoplasmosis in

mice lacking IL-10 (Gazzinelli et al. 1996, Liesenfeld

et al. 1996, Neyer et al. 1997). Results presented here

show that components of innate immunity, i.e., MyD88,

IL-12 and IFN-γ are also critical for resistance during

early stages of infection with Type I/III strains. Indeed,

MyD88 and TLR11 have been shown to be critical in

eliciting pro-inflammatory cytokines in mice, and de-

velopment of Th1 lymphocytes during toxoplasmosis

(Scanga et al. 2002, Yarovinsky et al. 2005). In addi-

tion, we have recently demonstrated that T. gondii de-

rived glycosylphosphatidylinositol (GPI) anchors acti-

vate TLR2 and TLR4, and that mice lacking both recep-

tors have a small increment in susceptibility. However,

by testing mice deficient in a single TLR (i.e. TLR2,

TLR4, or TLR9) or the related co-receptor (CD14) we

were unable to define a single innate immune receptor

that is critical for resistance. Together, our findings with

natural recombinant Type I/III strains indicate that T.
gondii parasites may engage various TLRs during in-
fection of the intermediate host.

Resistance to chronic T. gondii infection is associ-
ated with an acquired Th1-type cellular response (Gazzi-

nelli et al. 1991, 1992, 1994a). Indeed, both class I

and class II MHC molecules have been shown to influ-

ence disease outcome after T. gondii infection in mice
(McLeod et al. 1989b, Brown andMcLeod 1990, Suzuki
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et al. 1991, Blackwell et al. 1993, Johnson et al. 2002a).

More precisely, H2 haplotypes “d” and “b” are, respec-

tively, determinants of host resistance and susceptibil-

ity to infection with ME49 (Brown and McLeod 1990,

Brown et al. 1995). Consistently, CD4+ and CD8+ T

cells are essential components in host resistance to the

parasite (Gazzinelli et al. 1991, Suzuki et al. 1991). Fur-

ther, there is also evidence that a singular pattern of TCR

Vβ chain usage by anti-T. gondii T cells could influence
protection. Indeed, it was demonstrated that a higher

frequency of Vβ8 chain in T lymphocytes was associ-

ated with BALB/c (H2d) resistance against TE caused

by ME49, whereas preferential Vβ6 chain usage co-

related with susceptibility in CBA/Ca (H2k). Adoptive

transfer of BALB/c Vβ8+, but not Vβ6+, T cells was
capable to prevent mortality and encephalitis in nude

mice (Kang et al. 2003, Wang et al. 2005). Another evi-

dence of the importance of cell-mediated effector

mechanisms is that neutralization of IFN-γ or TNF-α

and inhibition of NOS2 leads to reactivation of chronic

infection with ME49 and results in encephalitis and

uveitis (Gazzinelli et al. 1992, 1993a, 1994a, Hayashi

et al. 1996a, b). Finally, B lymphocytes have also been

shown to contribute to host resistance, as demonstrated

in experiments with knockout mice (Johnson and Sayles

2002). However, most of the studies described above

employed strain ME49 that belongs to Type II lineage

of T. gondii.

Consistently, we found that Type I/III strains also

elicited strong Th1 responses with high IFN-γ , and high

IgG2/IgG1 ratio of specific antibodies (Fux et al. 2003).

Indeed, IFN-γ was shown essential for survival of ani-

mals infected with these parasite isolates. However, in

contrast to results obtained with congenic mice infected

with ME49, MHC haplotype H2d was not an important

determinant of resistance to Type I/III isolates. Further,

we were unable to find any association between usage

of specific TCR Vβ chains and resistance/susceptibility

to Type I/III strains. While not essential, B lympho-

cytes, CD8+ T cells and NOS2 seamed to be involved in

mechanisms controlling cyst numbers and host survival

during infection with those natural recombinant strains

of T. gondii isolated in Brazil.

In conclusion, the elements MyD88, IL-12 and

IFN-γ from the cellular compartment of innate

immunity are critical during early stages of infection

with Type I/III strains of T. gondii. However, we found
a discrepancy on the role of MHC haplotypes in host

resistance/susceptibility to Type I/III Brazilian isolates,

when comparing to the standard ME49, which is used

in many laboratories for immunological studies. Re-

sults suggest that an immunodominant T cell epitope

expressed by Type II strains, but not by Type I/III

isolates, may be involved on induction of protective ac-

quired immunity during T. gondii infection. Identifica-
tion of parasite antigen that encodes this particular T

cell epitope may contribute to better understanding the

different biological behavior of Type II versus Type I/III

strains of T. gondii and eventually the pathogenesis of
ocular toxoplasmosis.
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RESUMO

Cepas de Toxoplasma gondii que apresentam o genótipo I/III
são associadas a toxoplasmose ocular adquirida em humanos.

No presente trabalho, nós utilizamos ummodelo da doença em

camundongos para caracterizar mecanismos imunológicos en-

volvidos na resistência do hospedeiro à infecção por aquelas

cepas. Escolhemos as cepas D8, G2 e P-Br, que causam in-

fecção crônica em camundongos, semelhante à toxoplasmose

humana. Camundongos deficientes emMyD88, IFN-G e IL-12

foram susceptíveis a infecções com todas as três linhagens do

parasita. Esses dados indicam a importância de mecanismos

inatos no controle da infecção. Por outro lado, o haplótipo do

MHC não influenciou na resistência/susceptibilidade, na me-

dida em que linhagens de camundongos com ummesmo “back-

ground” genético, mas diferentes haplótipos de MHC (H2b e

H2d) apresentam o índice de mortalidade e número de cistos

semelhantes após a infecção com aquelas cepas do parasita.

Em contraste, o “background” genético de C57BL/6, mas não
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o haplótipo de MHC, foi crítico para o desenvolvimento de in-

flamação intestinal causada pelas cepas estudadas. Finalmente,

com relação aos mecanismos efetores, observamos que linfó-

citos B e TCD8+ controlam a sobrevivência após infecção. Por

outro lado, a ativação da enzima óxido nítrico sintase induzida

foi um fator importante para controle do número de cistos cere-

brais em camundongos infectados com cepas do Tipo I/III.

Esses achados são relevantes para o melhor entendimento dos

mecanismos imunológicos envolvidos na proteção e patogê-

nese durante infecção com T. gondii.

Palavras-chave: cepas de Toxoplasma gondii, imunidade
inata, imunidade adquirida, TLR e MHC.
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