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Abstract: Three SAR-derived observations of dark surface patches along the Northeastern 
Brazilian coastline by the end of 2019 were misreported in the Brazilian media as oil 
spill-related. Unfortunately, these observations were misled by false positives or look-
alikes. Therefore, this paper aims to technically evaluate these look-alike classes by 
analyzing image attributes found to be helpful to the identifi cation of ocean targets, 
including oil spills, rain cells, biofi lms, and low wind conditions. We use image 
augmentation to extend our dataset size and create the probability density function 
curves. The processing includes image segmentation, optimal attribute extraction, and 
classifi cation with random forest classifi ers. Our results contrast with the open-source 
oil spill detection system and patch classifi er methodology called “RIOSS.” Analysis of 
the feature probability density functions based on optimal attributes is promising since 
we could capture most of the false positive targets in the three SAR-reported images 
in 2019. The only exception was the biofi lm slick observed on October 28th, where the 
RIOSS mistakenly classifi ed this organic patch as a low wind region with oil spots. This 
pitfall is acceptable at this project stage since we had only fi ve biogenic fi lm samples to 
train the algorithm.
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INTRODUCTION
Vasconcelos et al. (2020), using a bibliometric 
analysis with a systematic review, revisit the 
relevant literature on oil spill detection and 
mapping from the last fi fty years (1970–2019). 
Their results prove that oil detection at sea has 
shown signifi cant evolution in recent decades. 
This evolution is explained by the fact that 
there is a strong relationship between the 
technological evolution of detection and remote 
sensing data acquisition methods. Among the 
countries that contributed most to this fi eld of 
science, China, Norway, the United States, and 

Canada stood out as the largest producers and 
disseminators of information in this research 
fi eld.

Spaceborne Synthetic Aperture Radar (SAR) 
is more efficient than other commonly used 
satellite oceanography techniques to monitor 
oil spills and natural seeps over the ocean’s 
surface, like optical remote sensing, thermal 
infrared imaging, and passive microwave 
sensors (Fingas & Brown 2018, Alpers et al. 2017, 
Chaturvedi et al. 2020). It is common sense that 
it is an excellent sensor for monitoring large 
maritime areas at regular intervals, all day (day/
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night), and foul weather detection due to its 
sensor characteristics. 

SAR generates electromagnetic pulses that 
“illuminate” the ocean surface, and it receives 
a backscattered echo described by the Bragg 
scattering theory. In calm (rougher) seas, most 
of the transmitted energy is reflected away from 
(towards) the radar, and the backscattered signal 
towards it is very low (high). The backscattered 
pulse is known as “radar echo.” The lower (higher) 
the echo, the darker (brighter) a target will appear 
on a SAR image. This is how oil spills appear as 
“dark spots” on radar images. They damp the 
capillary and short gravity waves responsible 
for the Bragg scattering. Consequently, these 
oil surface features are detectable and appear 
as dark spots in radar imagery. Nevertheless, 
classifying actual oil areas from look-alikes in 
SAR images is still challenging (Fingas & Brown 
2018, Alpers et al. 2017), as these dark formations 
can be associated with oil spills, biogenic films, 
rain cells, low wind areas, and ship wakes 
(Singha et al. 2012, Chen et al. 2017, Alpers et al. 
2016, Eldhuset 1996, Di Carro et al. 2018, Espedal 
& Wahl 1999).

As mentioned before, oil spills appear 
as dark spots in SAR images due to their 
characteristic viscosity, which increases the 
surface tension and reduces the Bragg waves at 
the ocean’s surface, thus, its echo. According to 
Fingas & Brown (2018) and Alpers et al. (2017), 
nowadays, oil spill response includes remote 
sensing as an essential component. Users 
expect its extent and location to be mapped to 
implement counter-measurements to minimize 
pollution and hold illegal discharges from ships 
accountable. Indeed, a hot topic in satellite oil 
detection is still separating real oil spills from 
false positives or look-alikes (Brekke & Solberg 
2005, Svejkovsky et al. 2016). 

Biogenic films are not different. They also 
damp the Bragg waves, diminishing the radar 

echo. These films are natural surface slicks 
produced by fish or plankton activity (Alpers & 
Hühnerfuss 1988, 1989, Gade et al. 1998). Indeed, 
according to Alpers et al. (2017), the most 
challenging task is to separate radar signatures 
caused by mineral oil spills from those caused 
by biogenic surface films. 

According to the scientific literature, 
rain leaves footprints on the sea surface that 
sometimes become visible on SAR images 
(Alpers et al. 2016). Heavy rain often appears in 
the form of rain cells, especially in the tropics 
and subtropics. They can be seen on satellite 
pictures as bright patchy areas of augmented 
sea surface roughness due to a boost of sea 
surface wind speeds caused by the downdraft 
winds. However, rain cells are not always 
associated with downdrafts. They can also show 
dark patches in their centers, where the rain-
induced turbulence in the ocean’s surface has 
damped the Bragg waves, i.e., the short surface 
waves responsible for the radar backscattering 
(Melsheimer et al. 1998).

As presented for oil spills and biogenic 
films, radar imagery is also susceptible to look-
alikes if the wind speed is lower than the 1.5 m/s 
limit (Fingas & Brown 2018, Alpers et al. 2017). 
According to Gade et al. (1998), who performed a 
series of slick controlled experiments with three 
different multifrequency/multipolarization 
SAR bands (i.e., L-, C-, and X-band), at high 
wind speeds (8-12 m/s), the ratio of the radar 
backscatter from a slick-free and a slick-covered 
water surface (damping ratio) is smaller than at 
low-to-moderate wind speeds (4-7 m/s). 

According to Reed & Milgram (2002), SAR 
observations of ship wakes usually show a dark 
trailing centerline region, a bright V-shaped 
feature aligned at some angle to the ship’s path, 
and, sometimes, either the transverse or the 
diverging waves of the Kelvin-wave pattern. The 
dark region is usually associated with relatively 
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low radar backscatter, whereas the bright line 
suggests a region of enhanced radar echo 
(Eldhuset 1996).

Therefore, one can see that classifying 
actual oil-like areas and separating them from 
look-alikes in SAR images is still challenging 
and not an easy task. Indeed, three divergent 
SAR-derived observations of the occurrence of 
dark surface patches along the Northeastern 
Brazilian coastline, when viscous crude oil 
reached over 200 locations along the coast, 
were reported in the Brazilian media (print 
and digital) erroneously as oil spill-related. 
To our knowledge, these are the only three 
displayed satellite images in the media. They 
were recorded during the austral spring of 
2019 – 19/07/2019, 11/10/2019, and 28/10/2019. 
Unfortunately, these observations were misled 
by false positives or look-alikes. The purpose of 
this paper is to analyze these three look-alikes 
using an oil spill detection methodology called 
“RIOSS algorithm” proposed by Conceição et 
al. (2021). Indeed, knowledge about ocean SAR-
derived targets is needed prior to press release 
notes and mainstream short communications.

MATERIALS AND METHODS
Satellite Data
Synthetic Aperture Radar (SAR) image data 
from Sentinel-1A and 1B satellites were 
acquired through the European Space Agency 
(ESA) website via the Copernicus Open 
Access Hub portal (https://scihub.copernicus.
eu/). Sentinel-1, the first of the Copernicus 
Program  satellite constellation, is on a sun-
synchronous, near-polar (98.18°) orbit with a 12-
day repeat cycle completing 175 orbits/cycle. Its 
SAR, which operates in the C-band and provides 
images in all-weather, daytime, or nighttime, has 
a spatial resolution of down to 5 m and a swath 
of up to 400 km. The fi rst satellite, Sentinel-1A, 

was launched on April 3rd, 2014, and Sentinel-1B, 
on April 25th, 2016. For further details, the reader 
should refer to (https://sentinel.esa.int/web/
sentinel/missions/sentinel-1).

These SAR images are available in Single 
Look Complex (SLC) format, with a 5m × 20m 
spatial resolution (azimuth and range) and 250km 
image range, level 1 processing, georeferenced, 
with satellite orbit and altitude provided 
in zero-Doppler inclined range geometry. 
Processed Level 1 SLC data, which have complex 
images with phase and amplitude, do not have 
all the corrections and pre-processing steps 
needed for the following analyses. Therefore, 
SAR data’s pre-processing steps included orbit 
correction, radiometric calibration in Sigma-
zero , deburst, and multilook. After the 
multilook pre-processing is applied, the pos-
processed images have a nominal resolution of 
20m x 20m. Before the computational analyses, 
these steps were done using the SNAP Sentinel 
toolboxes software. During the development 
of the RIOSS Code (Conceição et al. 2021), the 
analyzes were centered on radar backscattering 
values; however, the authors want to evolve to 
interferometry and polarimetry analyses soon. 
For this reason, we chose to use Single Look 
Complex (SLC) data from the fi rst steps of the 
code. 

For the random forest RIOSS model 
training, described by Conceição et al. (2021), 
39 Sentinel-1 SLC SAR images were used. A 
total of 1,138 sub-image blocks were analyzed 
according to the seven target classes and the 
seven attributes from this dataset. They were 
all shown as probability density functions (PDF) 
of each selected feature. In addition, three 
Sentinel-1 SAR images were downloaded for 
feature analysis and further classifi cation with 
the RIOSS algorithm. They are all Sentinel-1A 
SLC images, recorded in the Interferometric 
Wide (IW) swath mode during austral spring: 
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a) October 11th, 2019 (11/10/2019) - S1A IW SLC 
recorded at 07h 54min 49s UTC; b) July 19th, 2019 
(19/07/2019) - S1A IW SLC recorded at 07h 53min 
30s UTC; and c) October 28th, 2019 (28/10/2019) - 
S1A IW SLC recorded at 08h 04min 30s UTC. Their 
geographic positions are displayed in Figure 1.

Computational Analyses
The methodology used here is based on Solberg 
& Solberg (1996) and Conceição et al. (2021). The 
former used three main steps for detecting oil 
spills - image segmentation, attribute extraction, 
and classification - while the latter also combines 
that methodology with an optimized feature 
space and Random Forest Classifiers (RFC) 
based on decision trees (e.g., Pal 2005, Gislason 
et al. 2006). A Decision Tree Classifier (DTC) 
was the basis for random forest classification 

models. DTC separated a feature space into class 
domains. It took a feature vector as input into its 
root node, dividing the tree into two branches, 
representing two different classes. It was done 
by asking if one of the vector’s features was more 
significant than a previously trained one. The 
input vector kept walking through its branches 
and nodes until it got to “a leaf” or a final node, 
where the feature vector was finally classified 
between one of the predefined classes. The 
idea behind RFC models was to generate many 
trees trained on random subsets of a dataset. 
Each tree node can only choose a feature from a 
random subset of m elements from the selected 
attributes. The forest output was taken as the 
mode of its trees’ results. As DTC was considered 
a weak classifier, meaning that it usually offers 
considerable variance, using many of them in 

Figure 1. The study region shows oil spill landfall (orange circles) along the Northeastern Brazilian coastline for 
October 2019. The three Sentinel-1A SAR images used as test cases for look-alikes after the multilook processing.
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RFC often generated robust, lower variance 
outputs. For a detailed discussion about DTC 
and RFC methodologies, the reader should refer 
to Conceição et al. (2021).

Due to the limited number of images 
with targets of interest in Sentinel-1, we used 
the image augmentation technique. This 
methodology is essential in machine learning, 
providing a larger sample size. The application of 
this methodology makes it possible to multiply 
training data sets, creating more accurate 
models. In addition, this technique transforms 
the dataset images through spatial variations 
(Singh et al. 2011). The result can train or test 
an algorithm, maximizing learning with each 
new sample. In practice, the images used were 
rotated to 15, -30, 60, and -75° to apply the image 
magnification concept and nearly quintuple our 
dataset training and testing.

The classification algorithm, developed by 
Conceição et al. (2021), was trained to identify 
seven target classes: oil spill, biofilms, rain cells, 
low wind conditions, ocean’s surface, ships, 
and land cover. These authors named this 
methodology the “Radar Image Oil Spill Seeker 
(RIOSS).” The code is written in Python language 
and can be downloaded from the GitHub site 
(https://github.com/los-ufba/rioss). For further 
information on the RIOSS algorithm, the reader 
should refer to Conceição et al. (2021).

The step before classification aims to 
separate the image into blocks and apply a 
mixed adaptive threshold segmentation to 
identify possible dark targets in the SAR images. 
First, image segmentation was performed based 
on an adaptive threshold value, described by 
Mera et al. (2012) for separating oil and ocean 
pixels on SAR images. Later, we compute a set 
of image features for each given block and 
provide them as input to a random forest model 
that has been tuned to classify its associated 
block. Finally, the method was applied to a 

backscattering level estimation over a 512 x 
512 px² sub-image window. The window of 512 
pixels was defined as the ideal average size to 
image the primary targets (oil spill and look-
alikes) analyzed in the Sentinel-1 images. The 
result was a 512 x 512 px² Boolean mask that 
splits dark-spotted pixels from the background 
ocean. According to Conceição et al.’s (2021), 42 
features were extracted initially and separated 
into five main categories: shape, complexity, 
statistics, gradient-based, and texture elements. 
These attributes were later reduced to 11 to 
eliminate data redundancy and unnecessary 
computational cost. Such attributes are: 
“pseudo-spectral density functions based on: 
fractal dimension (psdfd), lacunarity (bclac), 
gradient mean (gradmean), mean, skewness 
(skew), Shannon entropy (entropy), kurtosis 
(kurt), segmentation mask’s Shannon entropy 
(segentropy), segmentation mask’s energy 
(segener), and background mean (bgmean). 
Other two attributes used were the foreground 
mean (fgmean) in the case of the seven-class 
model and complexity (complex) in the case of 
the oil detector. Then, they were estimated and 
sequentially compared to the usual response of 
the analyzed phenomena using their probability 
density functions (PDF), as computed from our 
augmented image dataset (Figure 2) via kernel 
density estimation (KDE). According to Conceição 
et al. (2021), these were the most representative 
ones showing clear class separation between 
the seven different selected target classes. As 
the objective of this work was to show how the 
PDFs of such relevant attributes allow us to infer 
the phenomena present in the analyzed images, 
we selected the PDFs that could give the best 
insights to the analysis discussed here. The 
reader should refer to their paper for a detailed 
description of the RIOSS algorithm. After that, 
we compared our analyses to the RIOSS model 

https://github.com/los-ufba/rioss
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outputs, which used the entire optimized feature 
space.

According to Conceição et al. (2021), the 
Python machine learning library Scikit-learn 
(Pedregosa et al. 2011) implementations were 
used to create and train decision trees and 
random forest models. Their random forest 
model had 60 decision trees and seven max 
depths to avoid overfitting. For the 7-class 
(oil, biofilm, rain, wind, sea, terrain, and ship) 
image labeling problem, the authors reported 
79% and 85% accuracy for the decision tree 
and random forest models. On the other hand, 
they discussed that decision trees evaluated 
the oil detector (2-class problem) with an 86% 
precision. In contrast, precision was increased 
to 93% with the random forest model using just 
the 11 features.

RESULTS AND DISCUSSION
Overall Performance
The seven attributes demonstrated relevant 
contributions to the separation between target 
classes, especially when they were analyzed 
together (Figure 4). 

Although the top first three panels of Figure 
4 (a to c) showed a tendency to separate oil-
related surface signature peaks (red – except 
for Figure 4c) from biofilm (green), rain cells 
(light blue), low wind conditions (grey), and 
ocean’s surface (royal blue), one could not easily 
separate these last four classes from each other.

Although these last four panels (Figures 4d 
to 4g) gave different attribute values depending 
on the window size choice (not shown here), 
the normalized Shannon entropy (NSE) showed 
that ship and land cover could be easily 
distinguished from the remaining target classes. 
Albeit the NSE should range from 0 to 1 instead 

Figure 2. Number of block images in the augmented dataset used to estimate the probability density functions 
(PDFs) for the seven selected target classes.
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of -1 to +1 (Figure 4d), infinite computed NSE 
values were replaced here by -1 (land cover and 
ship curves). Both targets usually had relatively 
high reflectance values (i.e., echo) than their 
ocean counterparts. In our case, it turned out to 
be a valuable parameter if one was seeking ship 
detection, as we were further away from land. 
This kind of correlation had been previously 
reported by Shirvany et al. (2012), Vespe & 
Greidanus (2012), Yin et al. (2014), Lupidi et al. 
(2017), and Gao et al. (2018). Indeed, Gao et al. 
(2018) mentioned that the NSE was considered 
a versatile tool for separating ships and high 
backscattering targets in SAR images. 

Just like complexity, the fractal dimension 
(FD) separated oil, land cover, and ship signatures 
from the other four target curves (Figures 4e and 
f). Ocean’s surface images were often easy to 
separate when considering the other classes 
based on these two attributes (Figures 4e and f). 

The FD attribute played an excellent role 
in class separation. It was possible to observe 
that a homogeneous spatial distribution fitted 
the generated PDF values between the various 
target classes. A clear separation between oil, 
low wind conditions, rain cells, and biofilm 
values made this algorithm the tool that best 
adapted to the objectives proposed here, even 
without a detailed analysis of the σ0 backscatter 
coefficient. Furthermore, it initially allowed us to 
identify a potential oil spill in each SAR image. 
Figures 4a, b, and c were essential in separating 
oil spill images and the complexity concerning 
other features.

Low wind conditions (grey curve) and 
biofilms (green curve) were often easily confused, 
especially when using these attributes to detect 
look-alikes (Figures 4b, c, e, and f). However, their 
signatures were quite apart when the absolute 
gradient mean (AGM) was applied (Figure 4g). 

Figure 3. Flowchart of the 
proposed methodology 
based on the RIOSS 
algorithm (Adapted from 
Conceição et al. 2021).
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This attribute performed satisfactorily and quite 
effectively identified most of the analyzed look-
alike classes.

The three case studies
The three SAR images used as case studies 
(19/07/2019, 11/10/2019, and 28/10/2019) were 
displayed in Fig. 4 as vertical black lines. These 
three values represented the mean attribute 
throughout these scenes. For each dark-spotted 
region observed in the original case study 
image, a subset was extracted, and then its 
corresponding attribute averaged over the entire 
subgroup. It was done by randomly subsampling 
the subset into 512 x 512-pixel blocks whose 
attributes were extracted and then averaged for 
the entire block, giving one value for each test 
case.

For the 28/10/2019 SAR image, the three 
averaged values (mean, spot mean, and 
background mean of 𝜎 0 [in dB] – Figure 4a, b, 
and c; vertical black dotted line, ~ -22 dB) showed 
relatively high probability density values for the 
biofilm class (green curve). It was also noticed 
that the ocean’s surface (royal blue), rain cells 
(light blue), low wind conditions (grey), and 
ship (magenta) curves showed relatively high 
probability density values too, which were also 
detached from the oil spill signature (red curve). 
Not only the 𝜎 curves’ peak in dB for biofilm (~ 
-22 dB) were different from the oil’s crest (-27 to 
-25 dB), but they do differ in terms of dB values 

Figure 4. Feature probability density functions 
based on the seven target classes. The three black 
vertical lines show the average attribute values for 
the Sentinel-1A SAR images used as case studies: 
11/10/2019 (continuous line), 19/07/2019 (dashed 
line), and 28/10/2019 (dotted line). The top first three 
panels (a, b, and c) showed a tendency to separate 
oil-related surface signature peaks. In contrast, the 
normalized Shannon entropy (d) showed that ship and 
land cover could be easily distinguished.
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too, with different values ranging approximately 
from 2 𝜎 5 dB. 

The same behavior was observed for the 
rain cells in the 11/10/2019 SAR image (vertical 
black line, ~ -18 dB). It was also noticed that rain 
cells (light blue), ocean surface (royal blue), and 
low wind conditions (grey) curves stood out from 
the remaining four classes. Their PDF values and 
curves’ behavior were easily detached from the 
oil spill signatures (Figures 4a, b, and c). One 
striking result was the relative importance of 
the biofilm signature (green curve), especially 
in Figures 4b and c. Compared with these 
three target classes, it showed a relatively low 
probability density for this test case image, 
which corresponded to a 𝜎 value of ~ -18 dB.

Analogous to what was described for the 
previous image, the 19/07/2019 SAR image 
(vertical black line, ~ -19 dB) test case also 
showed the relative importance of biofilms on 
Figures 4b and c. In addition, it showed slightly 
higher PDF values for biofilm signature than 
for low wind conditions. Although we did not 
scrutinize this result, we believe that this was 
due to the ship wake signature (seen as a black 
angled straight line).

Moreover, according to Alpers et al. 
(2016), the C-band 𝜎 rain signature can 
be enhanced (reduced) relative to its 
background.   Enhancement   (reduction ) 
is caused by the backscattering of Bragg 
waves increase (attenuation) due to the raindrops 
and downdraft winds usually associated with 
rain cells  (the turbulence generated by the 
raindrops) impinging onto the sea surface.

The analysis of complexity and FD could not 
distinguish the correct target class for each image 
(Figures 4e and f). Although the former attribute 
did quite well for the 11/10/2019 SAR image, 
it lacked adequately to deal with the biofilm 
signature (Figure 4e), which gave a probability 
density value higher than the observed actual 

conditions (i.e., presence of rain cells and low 
wind conditions). The same kind of behavior 
could be observed for the 19/07/2019 image. On 
the other hand, the FD seemed to capture low 
wind conditions from these two images and the 
ship detection of the last image.

Contrastingly, the AGM analysis gave better 
results than complexity and FD. It seemed to 
capture well low wind conditions on the first 
two images (11/10/2019 and 19/07/2019) and a 
ship in the second and third images. However, 
it could not capture the biofilm signature in the 
third image (28/10/2019).

According to our seven pre-selected target 
classes, figure 5 displayed the analysis of oil 
probability and classification maps, specifically 
for the three SAR test case images, both being 
outputs of RIOSS’ oil detector and its 7-class 
models, respectively. Except for the October 
28th, 2019 SAR image (Figure 5c), the first two 
oil probability and classification maps could 
precisely reproduce the radar scenes observed 
on these two images.

For the first image (11/10/2019, Figure 5a), one 
could see that the overall oil probability for the 
whole picture is below 0.2, except close to 11.4oS-
35.4oW, where two boluses with probabilities 
between 0.2 and 0.4 could be seen. Lower 
values (~ 0.2) were also seen in the upper right 
corner of the georeferenced image. Comparison 
between the actual SAR image (in 𝜎, dB) and its 
corresponding classification map showed good 
agreement, capturing the observed three rain 
cells and low wind conditions associated with 
these meteorological features. Although we did 
not investigate how sensible the RIOSS algorithm 
was to variable wind speeds, according to Alpers 
et al. (2016), low wind conditions can prevail 
if the Bragg waves’ backscattering on the sea 
surface is damped by turbulence generated by 
raindrops impinging onto the sea surface. They 
also argue that enhancing or reducing the Bragg 
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scattering depends on rain rate, wind speed, 
incidence angle, and raindrop distribution.

The July 19th, 2019 image (Figure 5b) showed 
an overall oil probability of less than 0.2 for 
the whole picture. As previously observed, the 
comparison between the SAR image and the 
classification map was in good agreement. The 
RIOSS algorithm captured and detected the 
ship’s presence (magenta, right panel), and the 
prevailed low wind conditions over the image. 

However, the algorithm misinterpreted the ship 
wake as low winds. This could be associated with 
the fact that the ship wake, seen as a dark angled 
straight line, had a small area compared to the 
low wind conditions, making it challenging to be 
accurately captured by the algorithm. Indeed, 
none of the 1,138 sub-image blocks used in this 
study had ship wake images to train the RIOSS 
algorithm. 

Figure 5. Oil probability and 
target classification maps 
based on the three SAR image 
case studies as outputs of 
the RIOSS’s algorithm. Except 
for the October 28th, 2019, 
SAR image (c), the first two oil 
probability and classification 
maps (a and b) could 
reproduce the radar scenes 
observed on those two dates 
quite well.
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Even though the algorithm could address 
low oil probability values (< 0.2) for the biofilm 
patch’s inner part, it failed to do it at its outer 
limits. As a result, this biofilm discontinuity with 
the ocean’s surface was mistakenly marked by 
high oil probabilities (> 0.6). Three key factors 
should be responsible for this misclassification. 
First, biofilms are the closest oil spill look-alikes 
in radar images, as seen in the PCA cross-plots 
in Conceição et al. (2021), making the confusion 
expected. However, the authors state that 
the precision metric was used to select the 
classification models. It means that the model 
was intentionally biased to be mistaken by false 
positives rather than false negatives (the most 
dangerous case). Second, their findings also 
indicate that gradient-dependent features were 
among the most important attributes when 
classifying oil spills, and those are especially 
anomalous in the dark-spotted borders. Third, it 
mistakenly addressed the biofilm’s inner portion 
as “low wind conditions” and its surroundings as 
discontinuity oil patches. On the other hand, the 
algorithm could register the ships’ presence in 
the SAR image (Figure 5c, right panel, magenta 
square).

This manuscript was developed during 
the first code version. Here, we used only five 
biogenic film images. The increase in the number 
of training images can reduce the biofilm class’s 
false positive classification values. However, 
according to Fiscella et al. (2000), a manual 
inspection is essential in classifying oil spills 
and look-alikes. So, even with the ability of 
probability curves to separate false positives 
from ocean oil spill targets, the mathematical 
algorithms are susceptible to prediction errors, 
indicating the importance of a technical team to 
verify the positive responses of targets in marine 
environments. Indeed, we are now working on a 
more robust version of the RIOSS code under 
the CNPQ/MCTI 06/2020 call – Research and 

Development for Coping with Oil Spills on the 
Brazilian Coast – Ciências do Mar Program, grant 
#440852/2020-0.

CONCLUSIONS
This paper investigates the capability of detecting 
and classifying look-alikes on Sentinel-1A SAR 
images. Three SAR-derived observations of oil 
spill patches along the Northeastern Brazilian 
coastline, reported in the Brazilian media (print 
and digital) as oil spill pictures, were used as 
test cases. These look-alikes were evaluated and 
tested using an oil spill detection methodology 
called “the RIOSS algorithm.” 

Our analyses based on optimal attributes 
are promising since we could capture most 
of the false positive targets in the three SAR-
reported images in 2019. The only exception 
was the biofilm slick observed on October 28th, 
where the RIOSS algorithm mistakenly classified 
this organic patch as a low wind region with oil 
spots. However, this pitfall is acceptable at this 
project stage since we had only five biogenic 
film samples to train the algorithm. Further 
studies will be conducted by:
1)	 increasing the number of target classes, 

especially for biofilm slicks;
2)	 allowing the analysis for archived SAR 

images other than the Copernicus Program 
satellite constellation to increase the 
accuracy of the model;

3)	 implementing an operational web-based oil 
spill warning framework for end-users and 
decision-makers. 
These future steps are part of an ongoing 

project recently funded by the Brazilian 
Navy, the National Council for Scientific and 
Technological Development (CNPQ), and the 
Ministry of Science, Technology, and Innovation 
(MCTI), call CNPQ/MCTI 06/2020 – Research and 
Development for Coping with Oil Spills on the 
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Brazilian Coast – Ciências do Mar Program, grant 
#440852/2020-0.
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