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MATHEMATICAL SCIENCE

Division of Power Series: Recursive and
Non-Recursive Formulas

PANTERS RODRÍGUEZ-BERMÚDEZ

Abstract: In this paper we propose a new formula to divide power series. We develop
two versions of the formula: a recursive and a non-recursive one, the latter aiming to
reduce the computational cost for high-order series truncation. To use the non-recursive
formula we define certain fundamental sets of summation indexes. Additional non-trivial
information about effects of repetition of the indexes are needed and contabilized within
a coefficient 𝛾 in the formula, we explain how to calculate the coefficient 𝛾 for each
summation index by constructing appropriate mappings between the fundamental sets
of indexes previous defined.
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INTRODUCTION

Operating with power series is important in applied mathematics, physics and engineering since
many problems of real life lead to complicated calculations with smooth functions, which can be
approximated by truncated power series. There are many works on power series and operations with
them. The Cauchy product (discrete convolution given in (4)) of two power series, allows calculation of
the n-th coefficient of the product without needs to calculate the previous coefficients 0 ≤ k ≤ n− 1.
For division of power series, in general, the classical algorithms calculate iteratively the n-th coefficient
of the quotient, i.e., they calculate all the previous coefficient k < n of the quotient series. For instance,
the traditional algebraic method to divide power series is iterated “polynomial long division”, which
contain cumbersome calculations especially for high-order truncated series, such iterative method
has elevated computational cost (it requires more than n(n − 1) multiplications and n(n − 1)/2
additions). Other classical methods to calculate the quotient P/Q of power series are based in the
previous calculation of the power series that represents the reciprocal 1/Q and then perform the
product P ⋅ 1/Q by the Cauchy formula. Kaluza 1928, Lamperti 1958 have important works on the
coefficients of reciprocal power series. From a computational point of view, Sieveking 1972 used the
reciprocal 1/Q to develop a fast iterative algorithm for division of power series, which needs less than
7(n − 1) nonscalar multiplications to obtain the first n coefficients of the quotient’s power series.
Kung 1974, showed that root-finding iterations can be used in the field of power series and obtained
a class of algorithms for computing reciprocals of power series with no more than 4(n− 1) nonscalar
multiplications. He also showed that Sieveking’s algorithm for computing reciprocals is the same
that Newton iteration. Brent & Kung 1978 used the Newton’s method for the computation of the first
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n coefficients of the quotient series in computational time O(n log n). In this paper we propose
a new formula (in closed-form)to divide power series. We develop two versions of the formula: a
recursive and a non-recursive one, the latter aiming to reduce the computational cost for high-order
series truncation; all (high-order) necessary multi-indexes sets and coefficients can be pre-calculated,
stored, and used to divide power series. With our non-recursive formula, the calculation of the n-th
coefficient of the quotient power series is independent of the calculation of previous coefficients.
This is an advantage over the methods before mentioned. We show two examples that illustrate the
usefulness of our new formula (in its non-recursive version) to calculate one of the coefficients of
the division power series without having to calculate the previous coefficients. For the particular
case of the reciprocal 1/Q of a power series, the problem of calculate each coefficient ak of the
reciprocal through our non-recursive formula, reduces to evaluate a k+ 1 degree multivariate rational
function in k + 1 variables. Horner’s Rule or similar strategies could be used in order to evaluate
the polynomials efficiently, see Carnicer & Gasca 1990. Implementation of algorithms based on our
formulas, detailed studies about computational complexity and establish comparisons with existing
computational methods to divide power series will be part of future works.

Our formula to divide power series can be applied also to differential calculus of smooth
functions. Since Analytic functions f ,g can be represented by convergent power series via Taylor’s
expansion, and their high order derivatives are related with the coefficients of their power series, our
non-recursive formula can be applied to represent the n-th derivative of the fraction f/g in terms
of the derivatives f k,gk, 0 ≤ k ≤ n. As far as we known, the only formula that exists for this type
of calculation (but not in the context of power series) was provided by Quaintance & Gould 2016
(see Section 8.3, equation 8.33). This formula relates high order derivatives of the quotient f/g with
the derivatives of the functions f , g and other non-linear expressions of these functions. He did not
used power series, instead, he obtained his formula as application of the generalized chain rule and
Hoppe’s formula.

MOTIVATION

Of course, developing a formula for a quotient of power series have a theoretical value itself as
a powerful tool in mathematical analysis. Nevertheless, we are specially motivated on potential
applications to asymptotic methods which are widely used to solve partial differential equations
and requires formal manipulations and operation with series through the process of obtaining the
solutions. Maslov 1977, proposed an asymptotic method that can be applied to obtain three types of
singular solutions (shocks, vortices and infinitely narrow solitons) for distinct problems modeled by
hyperbolic conservation laws. This asymptotic method uses smooth power series expansions of the
solutions in a neighborhood of the singularity to obtain the well known Hugoniot-Maslov chain to be
satisfied by the coefficients of the asymptotic expansion; see, for instance, Maslov 1977, Dobrokhotov
1999, Bulatov et al. 1997, Dobrokhotov et al. 2004. Of course, the nonlinearity of the flux functions
of the conservation laws leads to complicated calculations involving power series such as: iterated
products of power series, n-power of a power series, quotient between power series, and other
nonlinear operations between them. We refer Alvarez & Valiño-Alonso 2001, Rodríguez-Bermúdez
& Valiño-Alonso 2007, Bernard et al. 2012, Rodríguez-Bermúdez & Valiño-Alonso 2018 for examples
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where iterated products and n-power of power series were important to perform the asymptotic
method. When the flux function of the conservation law contains fractions; as in Buckley-Leverett
equation modeling two-phase flow in porous media with applications to oil engineering, division of
power series are needed to perform the asymptotic of the solutions. Motivated by that, we propose
here both a recursive and a non-recursive versions of a formula to divide power series, which can
be applied in those cases. See Rodríguez-Bermúdez et al. 2021 for an important application of our
non-recursive formula when performing asymptotic methods to obtain shock-type solutions for the
Buckley-Leverett equation.

We remark that in this work, we are not worried about convergence of the series, we focus only
on formal division of series when it is possible.

In the third section, we propose a recursive formula for the quotient of power series, the validity
of the formula was proved by induction method. In the fourth section, we propose an alternative
non-recursive formula to calculate the quotient of the power series, such way of calculation has
significant less computational cost than the original recursive version; however, it requires additional
information about repetition of summation indexes; we explain how to take into account such
information in the formula by defining a set of suitable mappings. In the fifth section we illustrate
with two examples the usefulness of our formulas.

A PRACTICAL FORMULA TO DIVIDE POWER SERIES: RECURSIVE VERSION

Given two power series ∑ ck𝜏k and ∑bk𝜏k, we provide a formula for their quotient ∑ak𝜏k =
∑ ck𝜏k/ ∑bk𝜏k.

Proposition 1. Consider the power series ∑ ck𝜏k and ∑bk𝜏k, and assume that the first coefficient
b0 of the series ∑bk𝜏k is not zero. The coefficients ak of the series corresponding to the quotient
∑ak𝜏k = ∑ ck𝜏k/ ∑bk𝜏k are given by

ak = 1
b0

k+1

k
∑
m=0

cm𝛼(k,m), (1)

where for each m and all k ≥ m the polynomials 𝛼(k,m) are defined by the following recurrence
formula

𝛼(k,m) = −
k−m
∑
i=1

𝛼(k− i,m)bi−10 bi (2)

with 𝛼(m,m) = bm0 . We also define 𝛼(k,m) = 0, for k < m.

Proof. First we focus in a product of two convergent power series, given the series
∞

∑
k=0

ak𝜏k and
∞

∑
k=0

bk𝜏k

their product is of course another convergent power series:
∞

∑
k=0

ck𝜏k = (
∞

∑
k=0

ak𝜏k) (
∞

∑
k=0

bk𝜏k) . (3)

If we perform the product term by term, we obtain by straight forward calculations (Cauchy
product)

ck =
k

∑
i=0

aibk−i, ∀k. (4)
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We start from the above expression for the product, in order to obtain a formula for the quotient
∑ ck𝜏k

∑bk𝜏k
. We will illustrate the recursive calculation of the first four coefficients a0,a1,a2,a3 of the

quotient. First we calculate the polynomial functions 𝛼(k,m), defined in (2) for k = 0, 1, 2, 3 andm ≤ k

𝛼(0, 0) = 1, 𝛼(1, 0) = −b1, 𝛼(1, 1) = b0, 𝛼(2, 0) = b21 − b0b2,

𝛼(2, 1) = −b0b1, 𝛼(2, 2) = b20,

𝛼(3, 0) = −b31 + 2b0b1b2 − b20b3, 𝛼(3, 1) = b0b21 − b20b2,

𝛼(3, 2) = −b20b1, 𝛼(3, 3) = b30.

(5)

Taking into account the expressions in (5), the product rule (3)-(4) allows the recursive calculation
of the coefficients ak as follows

c0 = a0b0 ⇒ a0 = c0
b0

= 1
b0

[c0𝛼(0, 0)],

c1 = a0b1 + a1b0 ⇒ a1 =
c1 − c0

b0
b1

b0
= c1
b0

− c0b1
b0

2

= c1b0 − c0b1
b0

2 = 1
b0

[c0𝛼(1, 0) + c1𝛼(1, 1)],

c2 = a0b2 + a1b1 + a2b0 ⇒ a2 =
c2 − c0

b0
b2 − c1b0 − c0b1

b0
2 b1

b0

= 1
b30

[c2b20 − c0b0b2 − c1b0b1 + c0b21 ]

= 1
b30

[c0𝛼(2, 0) + c1𝛼(2, 1) + c2𝛼(2, 2)],

c3 = a0b3 + a1b2 + a2b1 + a3b0 ⇒ a3 = c3 − a0b3 − a1b2 − a2b1
b0

, thus

a3 = c3
b0

−

c0
b0
b3

b0
−

(c1b0 − c0b1
b0

2 )b2

b0
−

1
b30

(c2b20 − c0b0b2 − c1b0b1 + c0b21)b1

b0

= 1
b40

[c3b30 − c0b20b3 − c1b20b2 + c0b0b1b2 − c2b20b1 + c0b0b1b2 + c1b0b21 − c0b31 ]

= 1
b40

[c0𝛼(3, 0) + c1𝛼(3, 1) + c2𝛼(3, 2) + c3𝛼(3, 3)].

Thus, the relation ak = 1
b0

k+1

k
∑
m=0

cm𝛼(k,m) holds for k = 0, 1, 2, 3. Of course, in order to

prove this for general k we have to perform a formal mathematics induction, we assume that

ak = 1
b0

k+1

k
∑
m=0

cm𝛼(k,m) for a given k, and we will prove that the same argument is true for the

k+ 1 coefficient.
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Indeed, (4) for k+ 1 gives

ck+1 =
k+1

∑
i=0

aibk−i+1, ∀k. (6)

Since b0 ≠ 0, (6) can be solved for ak+1 to obtain

ak+1 = 1
bk+2
0

[ck+1bk+1
0 −

k
∑
j=0

j

∑
m=0

cm𝛼(j,m)bk−j
0 bk−j+1]. (7)

Using the polynomial functions 𝛼(j,m) defined in (2) and taking into account that 𝛼(j,m) = 0 for
m > j, we interchange the summation symbols and obtain

ak+1 = 1
bk+2
0

[ck+1bk+1
0 +

k
∑
m=0

cm[ −
k

∑
j=m

𝛼(j,m)bk−j
0 bk−j+1]]. (8)

Now we use definition in (2) after setting i = k− j to obtain

ak+1 = 1
bk+2
0

[ck+1𝛼(k+ 1, k+ 1) +
k

∑
m=0

cm𝛼(k+ 1,m)]. (9)

Therefore,

ak+1 = 1
bk+2
0

[
k+1

∑
m=0

cm𝛼(k+ 1,m)]. (10)

completing the induction proof.

A NON-RECURSIVE FORMULA

In order to calculate ak for a high order k, the recursive combination (1)-(2) in general produces high
computational cost and we do not recommend it. An alternative non-recursive way to calculate the
coefficients ak of the quotient series can be performed by using (1) together with the following formula
for 𝛼(k,m)

𝛼(k,m) = ∑
(S0,⋯,Sk)∈Ωk,m

(−1)k+S0𝛾( ⃗S)
k

∏
i=0

bSii , (11)

with 𝛾( ⃗S) being a natural number which reflects contribution of a repeated index ⃗S ∈ Ωk,m in the
summation.

The fundamental sets Ωk,m of indices, are defined below

Ωk,m = {(S0, ⋯ , Sk) ∈ ℕk+1, such that
k

∑
n=0

Sn = k,
k

∑
n=1

nSn = k−m}. (12)

Remark. Notice that Ωk,m = ∅ for k < m.

Remark. Notice that the polynomials 𝛼(k,m) defined in (11) represent a k- degree homogeneous
polynomial in k+ 1 variables b0,b1, ...,bk.
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Example 1. For k = 1, 2, 3, 4 and m = 0 we have the sets of indices:

Ω4,0 ={(0, 4, 0, 0, 0); (1, 2, 1, 0, 0); (2, 1, 0, 1, 0); (2, 0, 2, 0, 0); (13)

(3, 0, 0, 0, 1)}, (14)

Ω3,0 ={(0, 3, 0, 0); (1, 1, 1, 0, ); (2, 0, 0, 1)}, (15)

Ω2,0 ={(0, 2, 0); (1, 0, 1)}, (16)

Ω1,0 ={(0, 1)}, (17)

Ω0,0 ={0}. (18)

Developing the recurrence formula (2) for k = 1, k = 2, k = 3, k = 4, etc... we rewrite the expressions
for 𝛼(k,m) in the format of (11), indeed

𝛼(0, 0) = 1, here 𝛾(0) = 1 in Ω0,0. (19)

𝛼(1, 0) = −𝛼(0, 0)b1 = −b1, here 𝛾((0, 1)) = 1 in Ω1,0. (20)

𝛼(2, 0) = −𝛼(1, 0)b1 − 𝛼(0, 0)b0b2 = b21 − b0b2,

here 𝛾((0, 2, 0)) = 1, 𝛾((1, 0, 1)) = 1 in Ω2,0.
(21)

𝛼(3, 0) = −𝛼(2, 0)b1 − 𝛼(1, 0)b0b2 − 𝛼(0, 0)b20b3
= −b31 + 2b0b1b2 − b20b3,

here 𝛾((0, 3, 0, 0)) = 1, 𝛾((2, 0, 0, 1)) = 1,

𝛾((1, 1, 1, 0)) = 2 in Ω3,0.

(22)

𝛼(4, 0) = −𝛼(3, 0)b1 − 𝛼(2, 0)b0b2 − 𝛼(1, 0)b20b3
− 𝛼(0, 0)b30b4
= b41 − 3b0b21b2 + 2b20b1b3 + b20b22 − b30b4,

here 𝛾((0, 4, 0, 0, 0)) = 1, 𝛾((2, 0, 2, 0, 0)) = 1,

𝛾((3, 0, 0, 0, 1)) = 1,𝛾((2, 1, 0, 1, 0)) = 2,

𝛾((1, 2, 1, 0, 0)) = 3 in Ω4,0.

(23)

Of course, in the generic case, the difficulty to calculate the proper value of the coefficient 𝛾( ⃗S)
for each arbitrary index ⃗S ∈ Ωk,m represents the main disadvantage of this non-recursive formula
given in (11) when compared to the recursive formula in (2). However, for special cases where all the
coefficients 𝛾( ⃗S) (which appear in the calculations) are known “a priori” (11) can be used, providing a
fast and efficient computational way of dividing power series.

Calculating the Coefficients 𝛾( ⃗S)

Now we explain how to calculate 𝛾( ⃗S) in order to apply the non-recursive formula in (11). We proceed
as follows.

For each j fixed (m ≤ j < k) and for each set of indexes (S0, ⋯ , Sj) ∈ Ωj,m we have that S0 + S1 +
⋯ + Sj = j and S1 + 2S2 + ⋯ + jSj = j−m.

We define the following map 𝜓k,m
j ∶ Ωj,m → Ωk,m, such that (S0, ⋯ , Sj) ↦ ( ̃S0, ⋯ , ̃Sk) as follows
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(i) In the case j = 0, we set ̃S0 = S0 + k− 1; ̃Si = 0, for i = 1, ⋯ , k− 1; ̃Sk = 1;

(ii) In the case 1 ≤ j < (k−1)/2, we set ̃S0 = S0+k− j−1; ̃Si = Si, for i = 1, ⋯ , j; ̃Sj+1 = ⋯ = ̃Sk−j−1 = 0;
̃Sk−j = 1; ̃Sk−j+1 = ⋯ = ̃Sk = 0.

(iii) In the case j = (k− 1)/2, we set ̃S0 = S0 + (k− 1)/2; ̃Si = Si, for i = 1, ⋯ , (k− 1)/2; ̃S[(k−1)/2]+1 = 1;
̃S[(k−1)/2]+2 = ⋯ = ̃Sk = 0.

(iv) In the case (k − 1)/2 < j ≤ k − 1, we set ̃S0 = S0 + k − j − 1; ̃Si = Si for i = 1, ⋯ , j with i ≠ k − j;
̃Si = Si + 1 for i = k− j, ̃Sj+1 = ⋯ = ̃Sk = 0.

Indeed, notice that in all above cases

̃S0 + ̃S1 + ⋯ + ̃Sk = (S0 + k− j− 1) + S1 + ⋯ + Sj + 1 = k, (24)
̃S1 + 2 ̃S2 + ⋯ + k ̃Sk = S1 + 2S2 + ⋯ + jSj + (k− j)

= k−m.
(25)

Thus, we have that ( ̃S0, ⋯ , ̃Sk) ∈ Ωk,m.

Definition 1. Given a vector of indexes ⃗S ∈ Ωk,m, the coefficient 𝛾( ⃗S) is defined by a natural number
which quantify all the inverse-image-composition-paths of the form [(𝜓i,m

m )−1 ∘ ⋯ ∘ (𝜓k,m
j )−1], m < i ≤

j < k, connecting the element ⃗S in Ωk,m with the element (m, 0, ..., 0) in Ωm,m.

Example 2. For m = 0, k = 4, we have

Ω0,0 ={0}, (26)

Ω1,0 ={(0, 1)}, (27)

Ω2,0 ={(0, 2, 0); (1, 0, 1)}, (28)

Ω3,0 ={(0, 3, 0, 0); (1, 1, 1, 0, ); (2, 0, 0, 1)}, (29)

Ω4,0 ={(0, 4, 0, 0, 0); (1, 2, 1, 0, 0); (2, 1, 0, 1, 0); (2, 0, 2, 0, 0); (3, 0, 0, 0, 1)}. (30)

For each set Ωi,0, i = 1, 2, 3, 4, let us to apply the maps

𝜓i,0
j ∶ Ωj,0 → Ωi,0 for 0 ≤ j < i

codomain Ω1,0 ∶𝜓1,0
0 (0) = (0, 1),

codomain Ω2,0 ∶𝜓2,0
0 (0) = (1, 0, 1); 𝜓2,0

1 ((0, 1)) = (0, 2, 0),

codomain Ω3,0 ∶𝜓3,0
0 (0) = (2, 0, 0, 1); 𝜓3,0

1 ((0, 1)) = (1, 1, 1, 0);

𝜓3,0
2 ((0, 2, 0)) = (0, 3, 0, 0); 𝜓3,0

2 ((1, 0, 1)) = (1, 1, 1, 0),

codomain Ω4,0 ∶𝜓4,0
0 (0) = (3, 0, 0, 0, 1); 𝜓4,0

1 ((0, 1)) = (2, 1, 0, 1, 0);

𝜓4,0
2 ((0, 2, 0)) = (1, 2, 1, 0, 0); 𝜓4,0

2 ((1, 0, 1)) = (2, 0, 2, 0, 0);

𝜓4,0
3 ((0, 3, 0, 0)) = (0, 4, 0, 0, 0); 𝜓4,0

3 ((1, 1, 1, 0)) = (1, 2, 1, 0, 0);

𝜓4,0
3 ((2, 0, 0, 1)) = (2, 1, 0, 1, 0).
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Since there are two inverse image composition-paths connecting the element (1, 1, 1, 0) (red color)
in Ω3,0 with the element 0 in Ω0,0, we have 𝛾((1, 1, 1, 0)) = 2. Indeed, notice that

[(𝜓1,0
0 )−1 ∘ (𝜓3,0

1 )−1](1, 1, 1, 0) = 0,

[(𝜓2,0
0 )−1 ∘ (𝜓3,0

2 )−1](1, 1, 1, 0) = 0.

As in the previous case, there are two inverse image composition-paths connecting the element
(2, 1, 0, 1, 0) (red color) in Ω4,0 with the element 0 in Ω0,0, we have 𝛾((2, 1, 0, 1, 0)) = 2.

[(𝜓1,0
0 )−1 ∘ (𝜓4,0

1 )−1](2, 1, 0, 1, 0) = 0,

[(𝜓3,0
0 )−1 ∘ (𝜓4,0

3 )−1](2, 1, 0, 1, 0) = 0.

By the other hand, there are three inverse image composition-paths connecting the element
(1, 2, 1, 0, 0) (blue color) in Ω4,0 with the element 0 in Ω0,0, we have 𝛾((1, 2, 1, 0, 0)) = 3. Indeed, notice
that

[(𝜓1,0
0 )−1 ∘ (𝜓2,0

1 )−1 ∘ (𝜓4,0
2 )−1](1, 2, 1, 0, 0) = 0,

[(𝜓2,0
0 )−1 ∘ (𝜓3,0

2 )−1 ∘ (𝜓4,0
3 )−1](1, 2, 1, 0, 0) = 0,

[(𝜓1,0
0 )−1 ∘ (𝜓3,0

1 )−1 ∘ (𝜓4,0
3 )−1](1, 2, 1, 0, 0) = 0.

The rest of the indexes (black color) have only one inverse image composition path so they have
𝛾( ⃗S) = 1.

APPLICATIONS

Example 3. Consider the Taylor series at x = 0 of the functions ex and cos x,

ex =
∞

∑
n=0

1
n!
xn (31)

cos x =
∞

∑
n=0

(−1)n

(2n)!
x2n (32)

By using the non-recursive formula for the division of power series we will calculate directly the
5-th coefficient (k = 4) of the quotient series.

Notice that in this case, c0 = 1, c1 = 1, c2 = 1/2, c3 = 1/6, c4 = 1/24 while b0 = 1, b1 =
0, b2 = −1/2, b3 = 0, b4 = 1/24. We define the vector of coefficients b⃗ = (1, 0, −1/2, 0, 1/24) and
⃗c = (1, 1, 1/2, 1/6, 1/24).

We evaluate the k-degree homogeneous polynomials 𝛼(k,m) (in their non-recursive form (11)) for
k = 4, m = 0, 1, 2, 3, 4 at the given vector ⃗b; see the Appendix section to see all the fundamental sets
Ωk,m and the corresponding coefficient 𝛾 of each index. Thus, we have 𝛼(4, 0) = 5/24, 𝛼(4, 1) = 0,
𝛼(4, 2) = 1/2, 𝛼(4, 3) = 0, 𝛼(4, 4) = 1. Therefore, by using (1) and the given vector ⃗c, we obtain a4 = 1/2,
i.e., the 5-th coefficient of the quotient power series.

Example 4 (Calculating the Reciprocal 1/Q). As an important special case, we can use our formula to
obtain the Reciprocal power series 1/Q of a given power series Q = ∑bixi. For this case, we have
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c0 = 1 and ci = 0, for 1 ≤ i; therefore the coefficient ak of the reciprocal power series is the rational
function in the variables b0,b1, ...bk

ak = 𝛼(k, 0)
bk+1
0

. (33)

For instance if Q = cos x, since the coefficient b0 = 1, the 5-th coefficient of the reciprocal power
series 1/Q is just a4 = 𝛼(4, 0) = 5/24; i.e., this is the 5-th coefficient of the Taylor series for the sec x
function.

Remark. In order to evaluate efficiently the multivariate polynomial 𝛼(4, 0) at the given vector b⃗, one
can use Horner’s Rule or similar strategies, see for instance (Carnicer & Gasca 1990). The problem of
finding the best strategy to reduce the computational cost of evaluating the polynomials 𝛼(k,m) will
be the focus of future works. However, in order to illustrate the usefulness of our method, for this
special example we rewrite the polynomial 𝛼(4, 0) in (23), as follows:

𝛼(4, 0) = (b1)2((b1)2 − 3b0b2) + (b0)2(b22 − b0b4 + 2b1b3) (34)

Thus we only need of 8 nonscalar multiplications and 4 additions to evaluate the above polynomial.
For a case in which b0 ≠ 1, the calculation of a4 via (33) requires three additional operations (two
multiplications and one division) totalizing 11 nonscalar multiplications/divisions and 4 additions.
These are few operations when compared with traditional methods like polynomials “long division”
which requires at least 21 multiplications and 10 additions to obtain iteratively the coefficients ai, i =
0, 1, 2, 3, 4 of the quotient power series.

Remark. If we want to calculate each of the first 5 coefficients a0,a1,a2,a3,a4 of the reciprocal
power series 1/Q, it would be necessary to evaluate all the polynomials 𝛼(0, 0), 𝛼(1, 0), 𝛼(2, 0), 𝛼(3, 0)
and 𝛼(4, 0) detailed in (19)-(23) and then to use the formula (33). These calculations require 14
nonscalar multiplications, 4 divisions and 7 additions; these are less operations than polynomials
“long division” method and contain a similar amount of nonscalar multiplications than Sieveking’s
algorithm (Sieveking 1972) or Kung’s algorithms (Kung 1974) to obtain the first 5 coefficients of the
reciprocal’s power series .

Acknowledgments
The author acknowledge the financial support provided by Brazilian funding agencies CAPES, CNPq and UFF - Federal
Fluminense University.

REFERENCES

ALVAREZ AC & VALIÑO-ALONSO B. 2001. Hugoniot-Maslov
Chain for nonlinear wave evolution with discontinuous
depth. In: Fourth Italian-Latin American Conference on
Applied and Industrial Mathematics, 2001, La Habana,
Memorias IV Simposio de Matematica, La Habana: Artes
Graficas, p. 426-434.

BERNARD S, MERIL A, RODRÍGUEZ-BERMÚDEZ P & VALIÑO
AB. 2012. Obtaining shock solutions via Maslov’s theory

and Colombeau algebra for conservation laws with
analytical coeficients. Novi Sad J Math 42: 95-116.

BRENT RP & KUNG HT. 1978. Fast Algorithms for
manipulating Formal Power Series. J ACM 25(4): 581-595.

BULATOV VV, DOBROKHOTOV SY, VLADIMIROV YV &
DANILOV VG. 1997. Hugoniot and Maslov Chains for
Solitary Vortex Solutions to Equations of Shallow Water,
the Hill Equation, and Trajectories of a "Typhoon eye",

An Acad Bras Cienc (2022) 94(3) e20210897 9 | 11



PANTERS RODRÍGUEZ-BERMÚDEZ DIVISION OF POWER SERIES

Proceedings of the Int.Conf. Asymptotic Methods in
Mechanics. Math Notes 78(5): 740-743.

CARNICER J & GASCA M. 1990. Evaluation of Multivariate
Polynomials and Their Derivatives. Math Comput 54(189):
231-243.

DOBROKHOTOV SY. 1999. Hugoniot-Maslov Chains for
Solitary Vortices of the Shallow Water Equations, I.
Derivation of the Chains for the case of Variable Coriolis
forces and Reduction to the Hill Equation. Russ J Math
Phys 6(2): 137-173.

DOBROKHOTOV SY, SEMENOV ES & TIROZZI B. 2004.
Hugoniot-Maslov Chains for Singular Vortical Solutions to
Quasilinear Hyperbolic Systems and Typhoon Trajectory.
J Math Sci 124(5): 5209-5249.

KALUZA T. 1928. Uber die Koefizienten reziproker
Potenzreihen. Math Z 28: 161-170.

KUNG HT. 1974. On computing Reciprocal of Power Series,
Numer. Math Springer-Verlag 22: 341-348.

LAMPERTI J. 1958. On the coeficients of reciprocal power
series. Amer Math Monthly 65(2): 90-94.

MASLOV VP. 1977. Propagation of Shock Waves in
Isoentropic non Viscous Gas, Itogui Naúki i Téjniki.
Covremiennie Problemi Matemátiki, VINITI: Moscow, v. 8,
199 p.

QUAINTANCE J & GOULD HW. 2016. Combinatorial
Identities for Stirling Numbers: The Unpublished Notes
of H. W. Gould. World Scientific, 260 p.

RODRÍGUEZ-BERMÚDEZ P, SOUSA FV, LOBÃO DC, ALVAREZ
GB & VALIÑO-ALONSO B. 2021. Hugoniot-Maslov Chain for
Shock Waves in Buckley-Leverett Equations. Math Notes
110 (5): 738-753.

RODRÍGUEZ-BERMÚDEZ P & VALIÑO-ALONSO B. 2007.
Hugoniot-Maslov chains of a shock wave in conservation
law with polynomial flow. Math Nachrichten 280: 907-915.

RODRÍGUEZ-BERMÚDEZ P & VALIÑO-ALONSO B. 2018.
Asymptotic Maslov’s method for shocks of conservation
laws systems with quadratic flux. Appl Anal 97(6):
888-901.

SIEVEKING M. 1972. An Algorithm for Division of Power
Series. Computing 10: 153-156.

How to cite
RODRÍGUEZ-BERMÚDEZ P. 2022. Division of Power Series: Recursive
and Non-Recursive Formulas. An Acad Bras Cienc 94: e20210897. DOI
10.1590/0001-3765202220210897.

Manuscript received on June 21, 2021;
accepted for publication on November 21, 2021

PANTERS RODRÍGUEZ-BERMÚDEZ
https://orcid.org/0000-0002-0901-106X

Universidade Federal Fluminense, Departamento de Ciências
Exatas, Av. dos Trabalhadores 420, Vila Sta. Cecília , 27255-125
Volta Redonda, RJ, Brazil

Correspondence to: Panters Rodrígues-Bermúdez

E-mail: pantersrb@id.uff.br

An Acad Bras Cienc (2022) 94(3) e20210897 10 | 11



PANTERS RODRÍGUEZ-BERMÚDEZ DIVISION OF POWER SERIES

APPENDIX

Ω4,0 ={(0, 4, 0, 0, 0); (1, 2, 1, 0, 0); (2, 1, 0, 1, 0); (2, 0, 2, 0, 0); (3, 0, 0, 0, 1)}, (35)

Ω4,1 ={(1, 3, 0, 0, 0); (2, 1, 1, 0, 0); (3, 0, 0, 1, 0)}, (36)

Ω4,2 ={(2, 2, 0, 0, 0); (3, 0, 1, 0, 0)}, (37)

Ω4,3 ={(3, 1, 0, 0, 0)}, (38)

Ω4,4 ={(4, 0, 0, 0, 0)}. (39)

The coefficients 𝛾( ⃗S) for the ordered fundamental sets (35)-(39) are stored in the following vectors

⃗𝛾4,0 = (1, 3, 2, 1, 1), ⃗𝛾4,1 = (1, 2, 1), ⃗𝛾4,2 = (1, 1), ⃗𝛾4,3 = 1, ⃗𝛾4,4 = 1
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