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Bartlett and Bartlett-type corrections in
heteroscedastic symmetric nonlinear regression
models

MARIANA C. ARAÚJO, AUDREY H.M.A. CYSNEIROS & LOURDES C. MONTENEGRO

Abstract: This paper provides general expressions for Bartlett and Bartlett-type correction
factors for the likelihood ratio and gradient statistics to test the dispersion parameter
vector in heteroscedastic symmetric nonlinear models. This class of regression models
is potentially useful to model data containing outlying observations. Furthermore, we
develop Monte Carlo simulations to compare size and power of the proposed corrected
tests to the original likelihood ratio, score, gradient tests, corrected score test, and
bootstrap tests. Our simulation results favor the score and gradient corrected tests as
well as the bootstrap tests. We also present an empirical application.

Key words: Bartlett corrections, Bartlett-type corrections, bootstrap, gradient test,
large-sample test statistics.

INTRODUCTION

The symmetric class of models has received increasing attention in the literature. Besides the normal
distribution, the symmetric family covers both light and heavy tailed distributions including the
Cauchy, Student−t, generalized Student−t and power exponential, among others. The symmetric
models provide a very useful extension of the normal model, since using a heavy tailed distribution for
the error component reduces the influence of extreme observations and enables carrying out a more
robust statistical analysis (Lange et al. 1989). An extensive range of practical applications considering
symmetric distributions can be found in various fields, such as engineering, biology and economics,
among others. Symmetric regression models have been the subject of several studies (e.g., Lin et al.
2009, Cysneiros et al. 2010, Lemonte 2012, Maior & Cysneiros 2018).

Constant dispersion is often a standard assumption when symmetric data are fitted. However,
in many practical situations this condition is not satisfied, requiring verification, since the inference
strategies change when one observes variable dispersion of the observations. The likelihood ratio
(LR), Wald and score are the large-sample tests commonly used for this purpose. The gradient test
proposed by Terrel (2002), whose statistic shares the same first-order asymptotic properties with the
LR, Wald and score statistics (Lemonte & Ferrari 2012a), has been the subject of many studies in the
past few years (e.g., Lemonte 2011, 2013, Lemonte & Ferrari 2012b, Medeiros & Ferrari 2017). Compared
to the Wald and score statistics, the gradient statistic does not depend on the information matrix,
either expected or observed, and is also simpler to compute.
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The four statistics for testing hypothesis in regression models have a null asymptotic 𝜒2q
distribution, where q is the difference between the dimensions of the parameter space under the
two hypotheses being tested, up to an error order of n−1. Relying on inference in tests based on such
statistics has less justification when dealing with small and moderately sized samples. A strategy
to improve the 𝜒2 approximation for the exact distributions of the LR, score and gradient statistics
is to multiply them by a correction factor. For the LR statistic, Bartlett (1937) proposed a correction
factor known as the Bartlett correction, which was put into a general framework later by Lawley (1956),
while for the score statistic, Cordeiro & Ferrari (1991) proposed a Bartlett-type correction. Based on
the results of Cordeiro & Ferrari (1991), Bartlett-type correction for the Wald statistic was derived
by Cribari-Neto & Ferrari (1995) in the heteroscedastic linear models. Furthermore, dos Santos &
Cordeiro (1999) obtained corrected Wald test statistics for one-parameter exponential family models.
Gradient statistic was proposed in a general framework by Vargas et al. (2013). The corrected versions
of the test statistics have the same 𝜒2q null distribution with approximation error of order n−2.
Cordeiro & Cribari-Neto (2014) provided additional details on Bartlett and Bartlett-type corrections.
Improved tests have been discussed in some recent articles, in particular Lemonte et al. (2012), Bayer
& Cribari-Neto (2013), Vargas et al. (2014) and Medeiros et al. (2017).

Considering the class of heteroscedastic symmetric nonlinear models (HSNLM) proposed by
Cysneiros et al. (2010), Cysneiros (2011) derived a Bartlett-type correction for the score statistic, and
carried out a numerical study to test the regression coefficients in the dispersion parameter. In this
paper, our main goal is to derive Bartlett and Bartlett-type corrections to improve inference of the
dispersion parameter based on the LR and gradient statistics, respectively, for the class of HSNLM
considering the parameterization presented in Cysneiros et al. (2010). In other words, we deal only with
one aspect of the high-order asymptotic theory which aims to obtain adjustments of test statistics.
Furthermore, we consider a partition of the dispersion parameter, which is an advantage since in
some cases we are not interested in making inferences of all parameters of the model. One of the
main results presented in this paper, the Bartlett correction factor for the LR statistic, is not the same
as presented in Araújo & Montenegro (2020), since the aforementioned dealt with two aspects of the
high-order asymptotic theory: first we obtained the adjustment for the profiled likelihood (first aspect)
and then we obtained the adjustment for the test statistic based on the profiled likelihood (second
aspect).

In order to achieve our aim, we adopt a regression structure to model the dispersion parameter
vector so that under the null hypothesis the dispersion is constant. In other words, the null hypothesis
delivers the symmetric nonlinear regression model. Our results provide a new class of tests that can
be used in practical applications, mainly those involving small datasets.

We perform a Monte Carlo simulation study to evaluate the performance of the proposed tests.
For comparison purposes, besides the proposed tests and the usual score and gradient tests, we also
consider in the Monte Carlo experiment the improved score test (Cysneiros 2011), the modified score
tests proposed by Kakisawa (1996) and Cordeiro et al. (1998) and bootstrap-based tests. Our simulation
results show that the improved gradient test proposed in this paper is an interesting alternative to the
classic large-sample tests, delivering accurate inferences, mainly when dealing with small datasets. We
are unaware of any simulation study in the literature drawing a comparison between the performance
of the proposed tests in the class of models considered, so this paper fills this gap.

An Acad Bras Cienc (2022) 94(Suppl. 3) e20200568 2 | 15



MARIANA C. ARAÚJO et al. BARTLETT AND BARTLETT-TYPE CORRECTIONS IN HSNLM

The remainder of this paper is organized as follows. In the next Section we present the class of
HSNLM, explaining inferential aspects. After that, we derive Bartlett and Bartlett-type corrections to
improve the LR and gradient tests for investigating varying dispersion in the model class of interest.
We also conduct a Monte Carlo study to evaluate and compare the performance of the proposed tests.
An application to real data is presented. Some concluding remarks are given in the last Section.

MODEL SPECIFICATION

Let y be a random variable with symmetric distribution. Its density function is given by

𝜋(y; 𝜇, 𝜙) = 1√
𝜙
g(u), y, 𝜇 ∈ ℝ, 𝜙 > 0, (1)

where 𝜇 is a location parameter, 𝜙 is a dispersion parameter, u = (y − 𝜇)2/𝜙, g ∶ ℝ → [0, ∞) is the
density generator (see, for example, Fang et al. (1990)). We then denote y ∼ S(𝜇, 𝜙,g). Cysneiros
et al. (2005) presented the density generator function g(⋅) for some symmetric distributions. In
some symmetric distributions the density generator function, g(⋅), depends on an additional shape
parameter, say 𝜈, which controls the kurtosis. This parameter can be estimated from the data or can
be kept fixed. Villegas et al. (2013) presented aspects of the symmetric distributions relating the issue
of robustness to the estimation of the parameter 𝜈. Thus, in this work we keep 𝜈 fixed.

Assume y1, … , yn are independent random variables where each yℓ has a symmetric distribution
(1) with location parameter 𝜇ℓ and dispersion parameter 𝜙ℓ. Also, consider that the components of𝜇𝜇𝜇 =
(𝜇1, … , 𝜇n)⊤ and 𝜙𝜙𝜙 = (𝜙1, … , 𝜙n)⊤ vary across observations through nonlinear regression structures.
The heteroscedastic symmetric nonlinear regression model yℓ ∼ S(𝜇ℓ, 𝜙ℓ,g), ℓ = 1, … ,n, proposed
by Cysneiros et al. (2010) is defined by (1) and by the systematic components for the mean vector
response 𝜇𝜇𝜇 and the dispersion parameter vector 𝜙𝜙𝜙 described as follows:

𝜇ℓ = f (xℓxℓxℓ;𝛽𝛽𝛽) and 𝜙ℓ = h(𝜏ℓ),

where f (⋅; ⋅) is a possibly nonlinear function in the second argument which is continuous and
differentiable in 𝛽𝛽𝛽, where 𝛽𝛽𝛽 = (𝛽1, … , 𝛽p)⊤ (p < n and 𝛽𝛽𝛽 ∈ ℝp) is a vector of unknown parameters
to be estimated, and xℓxℓxℓ = (xℓ1, … , xℓm)⊤ is an m× 1 vector of known explanatory variables associated
with the ℓth observation. The matrix of derivatives of 𝜇𝜇𝜇 with respect to 𝛽𝛽𝛽, ̃X ̃X ̃X = 𝜕𝜇𝜇𝜇/𝜕𝛽𝛽𝛽, is assumed to
have full rank for all 𝛽𝛽𝛽. Moreover, h(⋅) is a known continuous bijective function and differentiable in
𝛿𝛿𝛿. Furthermore, 𝜏ℓ = 𝜔ℓ𝜔ℓ𝜔ℓ

⊤𝛿𝛿𝛿 is a linear predictor where 𝜔ℓ𝜔ℓ𝜔ℓ = (1, 𝜔ℓ1, … , 𝜔ℓk−1)⊤ is a vector of explanatory
variables whose components are not necessarily different from xℓxℓxℓ and 𝛿𝛿𝛿 = (𝛿0, … , 𝛿k−1)⊤ (𝛿𝛿𝛿 ∈ ℝk) is a
vector of unknown parameters.

It is further assumed that if a value 𝛿0𝛿0𝛿0 of 𝛿𝛿𝛿 exists, then h(𝜔ℓ𝜔ℓ𝜔ℓ
⊤𝛿0𝛿0𝛿0) = 1 for all ℓ, so the terms y′

ℓs have
constant dispersion if 𝛿𝛿𝛿 = 𝛿0𝛿0𝛿0. The function h(⋅) should be positively valued, and a possible choice is
h(⋅) = exp(⋅), which is adopted in several papers (e.g., Cook & Weisberg 1983, Verbyla 1993, Simonoff
& Tsai 1994, Barroso & Cordeiro 2005). Furthermore, considering h(𝜏ℓ) = exp(𝜏ℓ) = exp(𝜔ℓ𝜔ℓ𝜔ℓ

⊤𝛿𝛿𝛿), it is not
necessary impose any restriction on the components of 𝜔𝜔𝜔ℓ (Cook & Weisberg 1983, Lin et al. 2009).
It is important to note that the meaning of heteroscedasticity we use in this work refers to varying
dispersion, that is, when 𝜙1 = 𝜙2 = … = 𝜙n we have a homoscedastic model; without this we have a
heteroscedastic model.
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Let l(𝜃𝜃𝜃) denote the total log-likelihood function for the parameter of vector 𝜃𝜃𝜃 = (𝛽𝛽𝛽⊤, 𝛿𝛿𝛿⊤)⊤ given
y1, … , yn. We have l(𝜃𝜃𝜃) = − 1

2 ∑n
ℓ=1 log(𝜙ℓ) + ∑n

ℓ=1 t(zℓ), with t(zℓ) = logg(z2ℓ) and zℓ = √uℓ = (yℓ−𝜇ℓ)
√𝜙ℓ

.
We assume that the function l(𝜃𝜃𝜃) is regular (Cox & Hinkley 1974, Chap 9) with respect to all 𝛽𝛽𝛽 and 𝛿𝛿𝛿
derivatives to the fourth order. The total Fisher information matrix for 𝜃𝜃𝜃 has a block diagonal structure,
i.e., K𝜃K𝜃K𝜃 = diag{K𝛽,K𝛿K𝛿K𝛿K𝛽,K𝛿K𝛿K𝛿K𝛽,K𝛿K𝛿K𝛿}, where K𝛽K𝛽K𝛽 = −𝛼2,0 ̃X ̃X ̃XΛΛΛ−1 ̃X ̃X ̃X and K𝛿K𝛿K𝛿 = W⊤VWW⊤VWW⊤VW, with ΛΛΛ = diag{1/𝜙1, … , 1/𝜙n},
W = 𝜕𝜏𝜏𝜏/𝜕𝛿𝛿𝛿W = 𝜕𝜏𝜏𝜏/𝜕𝛿𝛿𝛿W = 𝜕𝜏𝜏𝜏/𝜕𝛿𝛿𝛿 and VVV = diag{v1, … , vn}, such that vℓ = ((1 − 𝛼2,0)h′2

ℓ)/4𝜙2ℓ, where h′ = 𝜕𝜙ℓ/𝜕𝜏ℓ and
𝛼r,s = E{t(zℓ)(r)zsℓ} for r, s ∈ {1, 2, 3, 4} and t(zℓ)(k) = 𝜕kt(zℓ)/𝜕zkℓ , for k = 1, 2, 3, 4 and ℓ = 1, … ,n.
For some symmetric distributions, the quantities 𝛼r,s are given in Uribe-Opazo et al. (2008). The
parameters𝛽𝛽𝛽 and 𝛿𝛿𝛿 are globally orthogonal, so their respective maximum likelihood estimators (MLEs),

̂𝛽 ̂𝛽 ̂𝛽 and ̂𝛿 ̂𝛿 ̂𝛿, are asymptotically independent. In order to obtain the MLEs ̂𝛽 ̂𝛽 ̂𝛽 and ̂𝛿 ̂𝛿 ̂𝛿 iteratively, the scoring
method can be applied. This procedure is described in detail in Cysneiros et al. (2010).

Our interest is to test heteroscedasticity in symmetric nonlinear regression models. The null and
alternative hypotheses considered are, respectively, H0 ∶ 𝛿1𝛿1𝛿1 = 𝛿(0)

1𝛿
(0)
1𝛿
(0)
1 and H1 ∶ 𝛿1𝛿1𝛿1 ≠ 𝛿(0)

1𝛿
(0)
1𝛿
(0)
1 , where 𝛿𝛿𝛿 is

partitioned as 𝛿𝛿𝛿 = (𝛿0, 𝛿1𝛿1𝛿1⊤)⊤, with 𝛿0 a scalar and 𝛿1𝛿1𝛿1 = (𝛿1, … , 𝛿k−1)⊤. Here, 𝛿(0)
1𝛿
(0)
1𝛿
(0)
1 is a fixed column vector

of dimension k− 1 such that h(𝜔⊤
ℓ 𝛿(0)

1𝜔⊤
ℓ 𝛿(0)

1𝜔⊤
ℓ 𝛿(0)

1 ) = 1 and 𝛿0 and 𝛽𝛽𝛽 are considered nuisance parameters. Actually,
we are testing the dispersion parameters in the HSNLM, considering that under the null hypothesis this
model boils down to the symmetric nonlinear regression model. The partition previously considered
for 𝛿𝛿𝛿 induces the corresponding partitions: WWW = (W0W0W0,W1W1W1), where W0W0W0 is an n × 1 vector with all ones
andW1W1W1 = 𝜕𝜏𝜏𝜏/𝜕𝛿1,

K𝛿K𝛿K𝛿 =
⎡
⎢
⎢
⎢
⎣

K𝛿0𝛿0 KKK𝛿0𝛿1𝛿0𝛿1𝛿0𝛿1

KKK𝛿1𝛿0𝛿1𝛿0𝛿1𝛿0 KKK𝛿1𝛿1𝛿1𝛿1𝛿1𝛿1

⎤
⎥
⎥
⎥
⎦

,

with K𝛿0𝛿0 = W⊤
0 VW0W⊤
0 VW0W⊤
0 VW0, KKK⊤

𝛿0𝛿1𝛿0𝛿1𝛿0𝛿1
= KKK𝛿1𝛿0𝛿1𝛿0𝛿1𝛿0 = W⊤

1 VW0W⊤
1 VW0W⊤
1 VW0 e KKK𝛿1𝛿1𝛿1𝛿1𝛿1𝛿1 = W⊤

1 VW1W⊤
1 VW1W⊤
1 VW1. The likelihood ratio (SLR), score (Sr) and

gradient (Sg) statistics for testing H0 can be expressed, respectively, as

SLR = 2{l( ̂𝛿1̂𝛿1̂𝛿1, ̂𝛿0, ̂𝛽 ̂𝛽 ̂𝛽) − l(𝛿(0)
1𝛿
(0)
1𝛿
(0)
1 , ̃𝛿0, ̃𝛽 ̃𝛽 ̃𝛽)},

Sr = 1
4

[W1W1W1Λ̃̃Λ̃Λ( ̃S ̃S ̃S ̃F1 ̃F1 ̃F1 ̃u ̃u ̃u− ̃F1 ̃F1 ̃F1𝜄𝜄𝜄)]⊤(R̃ ̃RR̃⊤ ̃V ̃V ̃V ̃RR̃ ̃R)−1[W1W1W1Λ̃̃Λ̃Λ( ̃S ̃S ̃S ̃F1 ̃F1 ̃F1 ̃u ̃u ̃u− ̃F1 ̃F1 ̃F1𝜄𝜄𝜄)] and

Sg = 1
2

[W1W1W1Λ̃̃Λ̃Λ( ̃S ̃S ̃S ̃F1 ̃F1 ̃F1 ̃u ̃u ̃u− ̃F1 ̃F1 ̃F1𝜄𝜄𝜄)]⊤( ̂𝛿1̂𝛿1̂𝛿1 − 𝛿(0)
1𝛿
(0)
1𝛿
(0)
1 ),

where ( ̂𝛽 ̂𝛽 ̂𝛽, ̂𝛿0, ̂𝛿1 ̂𝛿1 ̂𝛿1) and ( ̃𝛽 ̃𝛽 ̃𝛽, ̃𝛿0, 𝛿
(0)
1𝛿
(0)
1𝛿
(0)
1 ) are, respectively, the unrestricted and restricted (under H0) MLEs of

(𝛽𝛽𝛽, 𝛿0, 𝛿1𝛿1𝛿1), 𝜄𝜄𝜄 is an n× 1 vector of ones and RRR = W1W1W1 −W0W0W0CCC, with CCC = (W0W0W0
⊤VVVW0W0W0)−1(W0W0W0

−1VVVW1W1W1). Under the
null hypothesis, these statistics have an asymptotic 𝜒2k−1 distribution up to an error of order n−1.

IMPROVED TEST INFERENCE

In order to obtain a more accurate inference when dealing with small and moderately sized samples,
some procedures based on second-order asymptotic theory have been developed in the literature. For
the HSNLM, a Bartlett-type correction factor for the score statistic was derived by Cysneiros (2011). To
provide another improved statistics to test varying dispersion in the HSNLM class, we derive Bartlett
and Bartlett-type correction factors for the LR and gradient statistics, respectively, considering the
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general procedures developed by Lawley (1956) and Vargas et al. (2014). The Bartlett and Bartlett-type
correction factors are very general and need to be obtained for every model of interest, since they
involve complex functions of the moments of log-likelihood derivatives up to the fourth order. Details
about the derivation of the Bartlett and Bartlett-type correction factors are given in the supplementary
material.

To test H0 ∶ 𝛿1𝛿1𝛿1 = 𝛿(0)
1𝛿
(0)
1𝛿
(0)
1 in HSNLM considering h(𝜔l𝜔l𝜔l⊤𝛿𝛿𝛿) = exp(𝜔l𝜔l𝜔l⊤𝛿𝛿𝛿), i.e., the case of heteroscedasticity

with multiplicative effects, the Bartlett-corrected LR statistic is given by

SLR∗ = SLR
1+ c/(k− 1)

,

where c = 𝜖(𝛿𝛿𝛿) + 𝜖(𝛽𝛽𝛽,𝛿𝛿𝛿) − 𝜖(𝛿0) − 𝜖(𝛽𝛽𝛽, 𝛿0),

𝜖(𝛿𝛿𝛿) = N1tr{Z𝛿d
Z𝛿dZ𝛿d

(2)} + N2𝜄𝜄𝜄⊤Z𝛿Z𝛿Z𝛿
(3)𝜄𝜄𝜄 + N3𝜄𝜄𝜄⊤ΛΛΛZ𝛿Z𝛿Z𝛿

(3)𝜄𝜄𝜄 + N4𝜄𝜄𝜄⊤ΛZ𝛿ΛZ𝛿ΛZ𝛿
(3)ΛΛΛ𝜄𝜄𝜄

+ N5𝜄𝜄𝜄⊤Z𝛿d
Z𝛿dZ𝛿d

(2)Z𝛿Z𝛿Z𝛿𝜄𝜄𝜄 + N6𝜄𝜄𝜄⊤Z𝛿d
Z𝛿dZ𝛿d

(2)Z𝛿Z𝛿Z𝛿ΛΛΛ𝜄𝜄𝜄 + (N7 + N8)𝜄𝜄𝜄⊤ΛΛΛZ𝛿d
Z𝛿dZ𝛿d

(2)Z𝛿Z𝛿Z𝛿𝜄𝜄𝜄,

𝜖(𝛽𝛽𝛽,𝛿𝛿𝛿) = −N15tr{ΛΛΛZ𝛽d
Z𝛽dZ𝛽dZ𝛿d

Z𝛿dZ𝛿d} − (N10 + N12)𝜄𝜄𝜄⊤ΛΛΛZ𝛽d
Z𝛽dZ𝛽dZ𝛿Z𝛿Z𝛿Z𝛿d

Z𝛿dZ𝛿d𝜄𝜄𝜄
+ N14𝜄𝜄𝜄⊤ΛΛΛZ𝛽d

Z𝛽dZ𝛽dZ𝛿Z𝛿Z𝛿Z𝛽d
Z𝛽dZ𝛽dΛΛΛ𝜄𝜄𝜄 − (N11 + N13)𝜄𝜄𝜄⊤ΛΛΛZ𝛽d

Z𝛽dZ𝛽dZ𝛿Z𝛿Z𝛿Z𝛿d
Z𝛿dZ𝛿dΛΛΛ𝜄𝜄𝜄

+ N9𝜄𝜄𝜄⊤ΛΛΛZ𝛿Z𝛿Z𝛿Z𝛽Z𝛽Z𝛽
(2)ΛΛΛ𝜄𝜄𝜄,

𝜖(𝛿0) = N1tr{Z𝛿0d
Z𝛿0dZ𝛿0d

(2)} + N2𝜄𝜄𝜄⊤Z𝛿0Z𝛿0Z𝛿0
(3)𝜄𝜄𝜄 + N3𝜄𝜄𝜄⊤ΛΛΛZ𝛿0Z𝛿0Z𝛿0

(3)𝜄𝜄𝜄 + N4𝜄𝜄𝜄⊤ΛZ𝛿0ΛZ𝛿0ΛZ𝛿0
(3)ΛΛΛ𝜄𝜄𝜄

+ N5𝜄𝜄𝜄⊤Z𝛿0d
Z𝛿0dZ𝛿0d

(2)Z𝛿0Z𝛿0Z𝛿0𝜄𝜄𝜄 + N6𝜄𝜄𝜄⊤Z𝛿0d
Z𝛿0dZ𝛿0d

(2)Z𝛿0Z𝛿0Z𝛿0ΛΛΛ𝜄𝜄𝜄

+ (N7 + N8)𝜄𝜄𝜄⊤ΛΛΛZ𝛿0d
Z𝛿0dZ𝛿0d

(2)Z𝛿0Z𝛿0Z𝛿0𝜄𝜄𝜄 and

𝜖(𝛽𝛽𝛽, 𝛿0) = −N15tr{ΛΛΛZ𝛽d
Z𝛽dZ𝛽dZ𝛿0d

Z𝛿0dZ𝛿0d} − (N10 + N12)𝜄𝜄𝜄⊤ΛΛΛZ𝛽d
Z𝛽dZ𝛽dZ𝛿0Z𝛿0Z𝛿0Z𝛿0d

Z𝛿0dZ𝛿0d𝜄𝜄𝜄
+ N14𝜄𝜄𝜄⊤ΛΛΛZ𝛽d

Z𝛽dZ𝛽dZ𝛿0Z𝛿0Z𝛿0Z𝛽d
Z𝛽dZ𝛽dΛΛΛ𝜄𝜄𝜄 − (N11 + N13)𝜄𝜄𝜄⊤ΛΛΛZ𝛽d

Z𝛽dZ𝛽dZ𝛿0Z𝛿0Z𝛿0Z𝛿0d
Z𝛿0dZ𝛿0dΛΛΛ𝜄𝜄𝜄

+ N9𝜄𝜄𝜄⊤ΛΛΛZ𝛿Z𝛿Z𝛿Z𝛽Z𝛽Z𝛽
(2)ΛΛΛ𝜄𝜄𝜄,

where Z𝛽Z𝛽Z𝛽 = ̃X ̃X ̃X( ̃X ̃X ̃X⊤ΛΛΛ ̃X ̃X ̃X)−1 ̃X ̃X ̃X⊤, Z𝛿Z𝛿Z𝛿 = WWW(WWW⊤VVVWWW)−1WWW⊤, Z𝛿0Z𝛿0Z𝛿0 = W0W0W0 (W0W0W0
⊤VVVW0W0W0)−1W0W0W0

⊤, Z𝛽Z𝛽Z𝛽
(2) = Z𝛽Z𝛽Z𝛽 ⊙ Z𝛽Z𝛽Z𝛽, Z𝛿Z𝛿Z𝛿

(2) =
Z𝛿Z𝛿Z𝛿 ⊙Z𝛿Z𝛿Z𝛿, Z𝛿0Z𝛿0Z𝛿0

(2) = Z𝛿0Z𝛿0Z𝛿0 ⊙Z𝛿0Z𝛿0Z𝛿0 , Z𝛿Z𝛿Z𝛿
(3) = Z𝛿Z𝛿Z𝛿

(2) ⊙Z𝛿Z𝛿Z𝛿, Z𝛿0Z𝛿0Z𝛿0
(3) = Z𝛿0Z𝛿0Z𝛿0

(2) ⊙Z𝛿0Z𝛿0Z𝛿0 , ⊙ denotes the Hadamard (elementwise)
product of matrices, and (⋅)d indicates that the off-diagonal elements of the matrix are set equal to
zero. For the sake of brevity, the elements Ni, i = 1, … , 15 are presented in the supplementary material.

The improved gradient statistic is obtained by multiplying its original statistic by a polynomial in
the original statistic itself. The corrected gradient statistic continues to have a chi-squared distribution
under the null hypothesis but its asymptotic approximation error decreases from n−1 to n−2, providing
a more accurate inference. To test H0 ∶ 𝛿1𝛿1𝛿1 = 𝛿(0)

1𝛿
(0)
1𝛿
(0)
1 in HSNLM when h(𝜔ℓ𝜔ℓ𝜔ℓ

⊤𝛿𝛿𝛿) = exp(𝜔ℓ𝜔ℓ𝜔ℓ
⊤𝛿𝛿𝛿), the corrected

gradient statistic is given by

Sg∗ = Sg{1− (cg + bgSg + agS2g)},
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where ag = Ag3
12(k−1)((k−1)+2)((k−1)+4) , bg = Ag2−2A

g
3

12(k−1)((k−1)+2) , cg = Ag1−A
g
2+A

g
3

12(k−1) , with

Ag1 = 12𝛼2,0Q2𝜄𝜄𝜄⊤ΛΛΛZ𝛽Z𝛽Z𝛽
(2) ⊙ (Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)ΛΛΛ𝜄𝜄𝜄 + 3Q22𝜄𝜄𝜄⊤ΛΛΛZ𝛽d

Z𝛽dZ𝛽d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)Z𝛽d
Z𝛽dZ𝛽dΛΛΛ𝜄𝜄𝜄

+ 6Q22𝜄𝜄𝜄⊤ΛΛΛ(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0) ⊙ Z𝛽Z𝛽Z𝛽
(2)ΛΛΛ𝜄𝜄𝜄 + 3Q1Q2𝜄𝜄𝜄⊤ΛΛΛZ𝛽d

Z𝛽dZ𝛽d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)Z𝛿0d
Z𝛿0dZ𝛿0d𝜄𝜄𝜄

+ 3Q1Q2𝜄𝜄𝜄⊤Z𝛿0d
Z𝛿0dZ𝛿0d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)Z𝛽d

Z𝛽dZ𝛽dΛΛΛ𝜄𝜄𝜄 + 3Q1Q2𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)Z𝛽d
Z𝛽dZ𝛽dΛΛΛ𝜄𝜄𝜄

+ 6Q1Q2𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)dZ𝛿0Z𝛿0Z𝛿0Z𝛽d
Z𝛽dZ𝛽dΛΛΛ𝜄𝜄𝜄 + 3Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)Z𝛿0d

Z𝛿0dZ𝛿0d𝜄𝜄𝜄
+ 6Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)dZ𝛿0Z𝛿0Z𝛿0Z𝛿0d

Z𝛿0dZ𝛿0d𝜄𝜄𝜄 + 3Q21𝜄𝜄𝜄⊤Z𝛿0d
Z𝛿0dZ𝛿0d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)Z𝛿0d

Z𝛿0dZ𝛿0d𝜄𝜄𝜄

+ 6Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0) ⊙ Z𝛿0Z𝛿0Z𝛿0
(2)𝜄𝜄𝜄 + 6Q3tr{Z𝛿0d

Z𝛿0dZ𝛿0d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d}
− 12Q5tr{ΛΛΛ(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)dZ𝛽d

Z𝛽dZ𝛽d} + 6Q4tr{ΛΛΛ(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)dZ𝛽d
Z𝛽dZ𝛽d},

Ag2 = −3Q1Q3𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)Z𝛽d
Z𝛽dZ𝛽dΛΛΛ𝜄𝜄𝜄

− 3Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)Z𝛿0d
Z𝛿0dZ𝛿0d𝜄𝜄𝜄

− 3Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)dZ𝛿0Z𝛿0Z𝛿0(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d𝜄𝜄𝜄 − 6Q21𝜄𝜄𝜄(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)
(2) ⊙ Z𝛿0Z𝛿0Z𝛿0𝜄𝜄𝜄

− 9
4
Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d𝜄𝜄𝜄 − 3

2
Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)

(3)𝜄𝜄𝜄

− 3Q3tr{(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)
(2)
d } and

Ag3 = 3
4
Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d𝜄𝜄𝜄 + 1

2
Q21𝜄𝜄𝜄⊤(Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)

(3)𝜄𝜄𝜄,

where (Z𝛿Z𝛿Z𝛿 − Z𝛿0Z𝛿0Z𝛿0)d = Z𝛿dZ𝛿dZ𝛿d − Z𝛿0dZ𝛿0dZ𝛿0d and Qi, i = 1, … , 5 are given in the supplementary material.
The correction factors that improve the LR and gradient statistics are not easy to interpret,

although they involve only simple matrix operations and can be easily implemented in any
programming environment that performs linear algebra operations, such as MAPLE, Ox, R, etc. Also,
they depend on the distribution in (1) only through the 𝛼’s and also depend on the number of nuisance
parameters, the dimension of the hypothesis tested and the matrices XXX and WWW of covariates. Finally,
all unknown parameters in the correction factors are replaced by their restricted MLEs.

NUMERICAL EVIDENCE

The simulation experiments are based on the heteroscedastic symmetric nonlinear regression model

yℓ = 𝛽0 + exp{𝛽1xℓ1} +
p

∑
s=2

𝛽sxsℓ + 𝜖ℓ, ℓ = 1, … ,n,

where 𝜖ℓ ∼ S(0, exp{𝜔ℓ𝜔ℓ𝜔ℓ
⊤𝛿𝛿𝛿},g). The response variable was generated assuming that 𝛽0 = … = 𝛽p−1 = 1,

𝛿0 = 0.1, 𝛿2 = 0.3, 𝛿3 = 0.5 and 𝛿4 = 𝛿5 = 𝛿6 = 1 and different values of p and k were considered. The
covariates x1, … , xp−1 and 𝜔1, … , 𝜔k were generated as random samples of the U(0, 1) distribution and
were kept fixed throughout the simulations. The null hypothesis tested is H0 ∶ 𝛿1 = … = 𝛿k−1 = 0,
i.e., exp{𝜔ℓ𝜔ℓ𝜔ℓ

⊤𝛿𝛿𝛿} = exp{𝛿0}, so that under H0 we have constant dispersion. We report the null rejection
rates of the tests based on the following statistics: the original likelihood ratio, score and gradient
statistics (SLR, Sr , Sg), their respective Bartlett and Bartlett-type corrected versions (SLR∗ , Sr∗ , Sg∗) and
themonotonic versions of the corrected score statistic proposed by Kakisawa (1996) and Cordeiro et al.
(1998) (Sr1∗ , Sr2∗), respectively. The bootstrap versions of the of the LR, score and gradient tests, with
SbootLR , Sbootr and Sbootg being their respective test statistics, were also included. For the bootstrap-based
tests, we followed the steps described as in Araújo & Montenegro (2020).
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The simulation results are based on the Student-t (with 𝜈 = 5) and power exponential (with
𝜈 = 0.3) models. The following nominal levels and sample sizes were considered: 𝛼 = 1%, 5% and 10%,
and n = 20, 30, and 40, respectively. All results were obtained using 10,000 Monte Carlo replications
and 500 bootstrap samples. The bootstrap sampling was performed parametrically under the null
hypothesis. The simulations were carried out using the Ox matrix programming language (Doornik
2006). All entries are percentages.

Tables I and II show results for different sample sizes while keeping fixed (varying) the number
of nuisance (interest) parameters. The results clearly show that the LR test is notably liberal (i.e., it
over-rejects the null hypotheses), especially when the numbers of interest parameters and nuisance
parameters increase (the results with varying number of nuisance parameters are not shown to save
space). It also can be noted that the gradient test behaves similarly to the LR test, but is less size
distorted, while the usual score test performs much better than the other two uncorrected ones,
although it is a bit liberal in a few cases. Considering 𝛼 = 1% and n = 30 for the Student-t model (see
Table I), the null rejection rates of the LR test are 3.2% (k = 3), 5.0% (k = 4) and 6.5% (k = 5), while
for the gradient test they are 2.4% (k = 3), 3.7% (k = 4) and 5.3% (k = 5), and for the score test they
are 0.8% (k = 3), 1.0% (k = 4) and 1.0% (k = 5).

The simulation results also showed that the corrected tests based on the SLR∗ , Sr∗ and Sg∗ statistics
outperformed their uncorrected versions, regardless of the sample size and the number of interest
or nuisance parameters. Additionally, as shown in Tables I and II, the corrected versions of the LR
and gradient tests are very sensitive to increasing the number of parameters in the model, whether
they are interest or nuisance parameters. Otherwise, the corrected score test is not influenced by the
increase in the number of parameters in the model and among the improved tests, the one based on
the Sr∗ statistic presents the best performance, exhibiting null rejection rates very close to the nominal
level in most cases. For example, considering the power exponential model (Table II), if k = 3,n = 20
and 𝛼 = 10%, the null rejection rate of the tests based on SLR∗ , Sg∗ and Sr∗ are, respectively, 16.7%,
11.3% and 10.3%, while considering the same scenario with k = 4, the null rejection rates for the tests
based on SLR∗ , Sg∗ and Sr∗ are, respectively, 21.0%, 15.7% and 9.6%. Now considering the tests based on
the monotonic versions of the corrected score statistics Sr∗1 and Sr∗2 proposed by Kakisawa (1996) and
Cordeiro et al. (1998), the simulation results show that the performance of the tests based on those
statistics are very similar to the corrected score test, presenting the same null rejection rate in most
cases.

Tables I and II also show that the bootstrap-based tests are less size distorted than the
corresponding uncorrected tests. Also, for the LR and gradient tests, their bootstrap versions
outperform the corrected ones. On the other hand, the bootstrap score test behaves, in general,
similarly to the monotonic and non-monotonic corrected ones. For small samples (n = 20), the
bootstrap score test presents null rejection rates closer to the nominal level than the monotonic
and non-monotonic corrected versions. For example, considering p = 3, k = 3, n = 20 and 𝛼 = 5%,
the null rejection rates are 17.7% (SLR), 8.2% (SLR∗), 4.8% (SbootLR , Sbootr ), 5.7% (Sr), 5.5% (Sr∗ , Sr∗1 , Sr∗2 ),
15.2% (Sg), 5.6% (Sg∗) and 5.2% (Sbootg ) for the Student-t model and 16.3% (SLR), 9.6% (SLR∗),
4.8% (SbootLR , Sr), 5.4% (Sr∗ , Sr∗1 , Sr∗2 ), 14.6% (Sg), 6.2% (S∗

g), 4.9% (Sbootr ) and 5.1% (Sbootg ) for the power
exponential model.
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Table I. Null rejection rates (%) for H0 ∶ 𝛿1 = … = 𝛿k = 0 with p = 3; t5 model.

n Stat 𝛼 = 10% 𝛼 = 5% 𝛼 = 1%

k k k

3 4 5 3 4 5 3 4 5

20 SLR 26.7 37.1 41.4 17.7 26.6 30.2 6.5 11.8 14.7

SLR∗ 14.7 18.1 18.3 8.2 10.7 10.7 2.0 3.1 3.0

Sr 11.0 11.3 12.2 5.7 5.7 6.1 0.9 1.1 1.0

Sr∗ 10.0 10.3 11.2 5.5 5.2 5.8 1.1 1.0 1.0

Sr1∗ 10.1 10.3 11.2 5.5 5.2 5.8 1.1 1.0 1.0

Sr2∗ 10.1 10.3 11.2 5.5 5.2 5.8 1.1 1.0 1.0

Sg 24.1 33.1 36.5 15.2 22.6 26.1 5.3 9.2 11.4

Sg∗ 10.6 16.9 18.7 5.6 10.2 11.5 1.6 3.2 4.3

SbootLR 10.1 10.0 9.8 4.8 4.8 5.0 0.9 1.1 1.1

Sbootr 9.5 10.1 9.9 4.8 4.7 4.8 1.1 1.0 0.9

Sbootg 10.1 10.3 9.6 5.2 4.9 4.6 1.0 1.1 0.9

30 SLR 18.4 23.0 26.0 11.0 14.1 17.3 3.2 5.0 6.5

SLR∗ 12.0 12.7 13.6 6.4 6.7 7.8 1.3 1.7 2.0

Sr 10.4 10.2 11.0 5.0 5.2 5.5 0.8 1.0 1.0

Sr∗ 9.8 9.9 10.2 4.8 5.1 5.1 0.8 1.1 1.0

Sr1∗ 9.8 9.9 10.2 4.8 5.1 5.1 0.8 1.1 1.0

Sr2∗ 9.8 9.9 10.2 4.8 5.1 5.1 0.8 1.1 1.0

Sg 17.1 20.1 24.0 9.7 11.9 15.5 2.4 3.7 5.3

Sg∗ 10.5 11.1 14.6 5.4 6.0 8.3 1.0 1.5 2.6

SbootLR 10.4 10.0 10.6 5.4 4.8 5.5 1.4 0.9 1.3

Sbootr 10.3 10.4 9.9 5.7 5.3 5.0 1.2 0.9 0.9

Sbootg 10.2 10.2 9.8 5.4 5.0 5.2 1.1 0.9 1.0

40 SLR 15.8 17.6 19.1 9.9 10.7 11.1 2.6 3.1 3.2

SLR∗ 11.7 11.2 10.9 6.1 6.0 5.2 1.2 1.3 1.2

Sr 10.8 10.5 10.6 5.5 5.2 5.1 0.9 0.9 0.9

Sr∗ 10.2 10.0 9.9 5.3 5.1 4.8 0.9 0.9 0.9

Sr1∗ 10.2 10.1 10.0 5.3 5.1 4.8 0.9 0.9 0.9

Sr2∗ 10.2 10.0 9.9 5.3 5.1 4.8 0.9 0.9 0.9

Sg 15.2 16.6 17.8 8.8 9.9 10.1 2.1 2.5 2.5

Sg∗ 9.9 10.8 10.6 4.9 5.5 5.4 1.1 1.1 1.2

SbootLR 9.9 10.2 9.6 4.7 5.1 4.8 1.0 1.0 1.1

Sbootr 9.8 9.9 10.1 5.1 4.9 5.2 0.9 1.0 1.0

Sbootg 9.9 9.9 9.7 5.0 4.9 4.8 0.9 0.9 0.9
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Table II. Null rejection rates (%) for H0 ∶ 𝛿1 = … = 𝛿k = 0 with p = 3; power exponential 𝜈 = 0.3model.

n Stat 𝛼 = 10% 𝛼 = 5% 𝛼 = 1%

k k k

3 4 5 3 4 5 3 4 5

20 SLR 25.2 34.0 35.9 16.3 23.7 25.3 6.2 9.8 10.7

SLR∗ 16.7 21.0 20.0 9.6 12.5 12.0 2.9 3.5 3.5

Sr 9.7 9.9 10.3 4.8 5.2 5.7 0.9 1.7 1.6

Sr∗ 10.3 9.6 10.0 5.4 3.6 4.5 1.2 1.1 0.6

Sr1∗ 10.3 10.1 10.1 5.4 3.6 4.5 1.2 1.1 0.6

Sr2∗ 10.3 10.0 10.1 5.4 4.3 4.7 1.2 1.1 0.6

Sg 23.0 30.1 31.5 14.6 20.4 21.4 5.1 7.6 8.7

Sg∗ 11.3 15.7 15.4 6.2 8.5 9.0 1.3 2.2 2.7

SbootLR 10.1 10.4 10.1 4.8 5.3 5.4 1.0 1.1 1.3

Sbootr 9.8 10.4 10.1 4.9 5.0 5.2 1.0 0.9 1.3

Sbootg 10.4 10.1 10.0 5.1 5.1 5.2 0.9 0.9 1.0

30 SLR 18.6 21.3 22.8 11.1 13.1 14.2 3.4 4.2 4.5

SLR∗ 13.9 14.3 14.3 7.7 8.0 7.5 1.9 2.0 1.6

Sr 9.9 10.3 10.1 5.2 5.3 5.4 1.4 1.4 1.3

Sr∗ 10.2 10.2 10.0 5.5 4.5 4.8 1.4 1.2 0.7

Sr1∗ 10.2 10.3 10.0 5.5 4.7 4.8 1.4 1.2 0.7

Sr2∗ 10.2 10.3 10.0 5.5 4.7 4.8 1.4 1.3 0.7

Sg 18, 0 20.2 21.5 10.5 12.2 13.0 3.2 3.5 3.7

Sg∗ 11.4 12.1 12.4 6.0 6.4 6.2 1.2 1.4 1.4

SbootLR 10.2 10.7 10.5 5.3 5.4 5.5 1.3 1.0 1.2

Sbootr 10.3 10.3 9.6 5.2 5.1 5.0 0.9 1.1 1.1

Sbootg 10.3 10.3 9.7 5.2 5.2 4.9 0.9 1.0 0.9

40 SLR 14.4 16.4 18.3 8.2 9.3 10.9 2.3 2.9 3.4

SLR∗ 12.6 11.7 12.7 6.6 6.4 7.3 1.8 1.7 1.8

Sr 10.4 9.3 10.1 5.4 4.9 5.3 1.2 1.1 1.4

Sr∗ 10.2 9.4 10.7 4.8 4.8 5.7 0.5 0.8 1.5

Sr1∗ 10.3 9.4 10.7 4.9 4.8 5.7 0.8 0.9 1.5

Sr2∗ 10.3 9.4 10.7 4.9 4.8 5.7 0.8 0.9 1.5

Sg 13.9 15.5 17.3 7.8 8.7 10.1 2.1 2.5 2.8

Sg∗ 9.9 10.5 11.7 5.0 5.6 6.4 1.2 1.5 1.5

SbootLR 9.7 10.5 9.7 5.5 5.0 4.9 1.1 0.9 1.2

Sbootr 10.2 10.1 10.2 5.0 4.8 5.3 1.1 0.8 1.2

Sbootg 10.2 9.9 10.1 5.1 4.8 5.3 1.1 0.9 1.2
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Finally, we also point out that all corrected and uncorrected tests present null rejection rates very
close to the corresponding nominal level as the sample size increases, as expected.

Completing our simulations, we also obtained rejection rates under the alternative hypothesis
(heteroscedasticity) for n = 30, p = 3, different values of 𝛿1 = 𝛿2 = 𝛿3 = 𝛿 and at the 10% nominal
level. It is noteworthy that these power simulations correspond to the setting in Tables I and II for
n = 30. We did not include the likelihood ratio test, corrected likelihood ratio test, and gradient test
in the power comparison since they are too liberal to be recommended. All other tests studied in this
paper were considered. It should be noted in Figure 1 that the powers of the tests are similar, although
there is an ordering, being the bootstrap-based tests and the corrected gradient test the ones which
were slightly more powerful. As expected, the power tends to one when |𝛿| grows.
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Figure 1. Power functions of the tests for H0 ∶ 𝛿1 = … = 𝛿3 = 𝛿 with p = 3, n = 30, 𝛼 = 10%; (a) t5 and (b) power
exponential 𝜈 = 0.3models.

In summary, the simulation results presented in this section show that the LR and gradient tests
are considerably oversized (liberal) and the analytical Bartlett and Bartlett-type corrections for these
tests are effective in reducing the size distortion. Also, their bootstrap versions outperformed the
corrected ones, presenting results closer to the nominal levels considered. The score test is the best
performing uncorrected test. Its (monotonic or not) corrected versions perform the same, as well its
bootstrap-based test which, in some cases, performed better than the corrected versions.

REAL DATA APPLICATION

In this section, we consider a dataset analysed by Rawlings (1988) and Brazzale (2000). The dataset
comes from a study executed by the Botany Department of North Carolina State University, where
an experiment was carried out with the aim of performing biochemical analysis of intracellular
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storage and calcium transport across the plasma membrane. For this purpose, the cells studied were
suspended in a solution of radioactive calcium for a certain period of time x (in minutes), after which
was measured the amount of calcium absorbed by the cells y (in nmol/mg). The studied sample
contains 27 observations and the model used is given by

yℓ = 𝛽0{1− exp(−𝛽1xℓ)} + uℓ, ℓ = 1, … , 27, (2)

where Cov(uℓ,um) = 0 for all ℓ ≠ m. Initially, we assume that uℓ ∼ N(0, exp{𝛿0}). The
maximum likelihood parameter estimates and their asymptotic standard errors in brackets are ̂𝛽0 =
4.3094 (0.2901) ̂𝛽1 = 0.2084 (0.0376) and ̂𝛿0 = −1.286 (0.2722).

Residual analysis of the fitted homoscedastic normal model suggest an evidence of
heteroscedasticity. In addition, we detect the presence of two observations #21 and #22 with
large residuals (in absolute value) outside range [-2,2] (see Figure 2a). Due to the evidence of
heteroscedasticity, we assume that uℓ ∼ N(0, exp{𝛿0 + 𝛿1xℓ}), named here, heteroscedastic normal
model.

Our main interest lies in testing H0 ∶ 𝛿1 = 0 (homoscedasticity) against H1 ∶ 𝛿1 ≠ 0. Rejection
of the null hypothesis would suggest that the nonconstant response variance should be modeled
as well. Table III presents the observed values for the test statistics and their respective p−values.
Considering the 10% nominal level, the score, the standard likelihood ratio tests (and their corrected
versions) and the gradient test, lead to rejecting H0, suggesting the presence of heteroscedasticity.
While the tests based on S∗

g, SbootLR , Sbootr and Sbootg statistics may not reject the null hypothesis at the
same nominal level.

The studentized residual plot versus fitted values for the fitted heteroscedasticity normal model
(see Figure 2b) still presents a slight indication of heteroscedasticity and residuals in the limit of
the range [−2, 2]. Furthermore, we may suspect the presence of aberrant points, which we propose a
symmetrical model with heavy tails as Student-t model. Lange et al. (1989) suggest that the degrees
of freedom should be fixed for small-sized samples and indicate that 𝜈 = 4 has worked well for some
applications.

Figure 2c from the fitted homoscedastic Student-t model does not highlight aberrant points but
still suggests little evidence of heteroscedasticity. Finally, Figure 2d from the heteroscedastic Student-t
model does not present evidence of heteroscedasticity and does not highlight aberrant points. It
follows that all proposed tests lead to the same decision of homoscedasticity at the nominal level
𝛼 = 10% (see Table III). Therefore, based on the parsimony principle we suggest the Student-t model.

CONCLUSIONS

In this paper we derive Bartlett and Bartlett-type corrections to improve hypothesis testing of the
dispersion parameters for the HSNLM class of proposed by Cysneiros et al. (2010) and compare
in a simulation study the performance of the proposed tests with the score test, its Bartlett-type
corrected version and the uncorrected LR and gradient tests. We also consider for the simulation
study monotonic versions of the Bartlett-type corrected score test and bootstrapped tests.

The numerical evidence suggests that the usual LR and gradient tests have similar performance,
being oversized, mainly if the sample size is small or even moderate. The Bartlett and Bartlett-type
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Figure 2. Calcium data. Plots of the studentized residual versus fitted values (a) homoscedastic normal model, (b)
heteroscedastic normal model (c) homoscedastic Student-t model, (d) heteroscedastic Student-t with 𝜈 = 4model.

corrections attenuate this tendency, although the Bartlett corrected LR test still presents very liberal
behavior while the Bartlett-type corrected gradient test produces results comparable to those of the
usual and (monotonic or not) Bartlett-type corrected score tests. Additionally, the corrected score test
and the bootstrapped tests perform the best overall. An advantage of the analytically corrected tests
in relation to the bootstrapped tests is that they do not demand as much computational burden.
Moreover, it is important to note that the corrected tests deliver more reliable inferences than their
uncorrected versions when dealing with small or even moderate sized samples. We hence encourage
practitioners to use the Bartlett-type corrected score and gradient or bootstrapped tests.
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Table III. Test statistics and p−values for testing H0 ∶ 𝛿1 = 0 in normal model and t4 model.

Normal model t4 model

Stat Observed value p−value Observed value p−value

SLR 3.097 0.078 2.283 0.131

SLR∗ 2.908 0.088 2.174 0.140

Sr 3.029 0.082 2.634 0.105

S∗
r 3.456 0.063 2.515 0.113

S∗
r1 3.491 0.063 2.518 0.113

S∗
r2 3.473 0.062 2.517 0.113

Sg 3.030 0.082 2.277 0.131

S∗
g 2.710 0.100 2.038 0.153

SbootLR 0.108 0.183

Sbootr 1.000 0.945

Sbootg 0.398 0.276

Sbootg 0.398 0.276
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