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river-lake transition in extreme Southern Brazil
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Abstract: Mirim lagoon is the second largest lacustrine water body in Southern Brazil, 
providing water for local communities. However, algae growth and water quality in the 
lagoon and in tributaries rivers is infl uenced by nutrient’s increase. I n this context, 
this study performs the empirical and semi-empirical chlorophyll-a (Chl-a) modeling 
using remote sensing and in situ data for water quality assessment. Water quality 
data were collected at 15 sample locations in the lagoon on the date of Sentinel-2 
satellite overpass. S urface refl ectance data were derived from the Sen2Cor atmospheric 
correction method and correlated with Chl-a concentration. The best model presented 
a Pearson’s correlation coeffi cient = 0.81 and Mean Absolute Error = 0.13µg.L-1. Low Chl-a
concentration is observed at the Northern lagoon, possibly due to suspended solids 
presence. The same occurs in the left margin, being associated with the infl uence of land 
use for agriculture. High Chl-a concentrations are associated with shallower and lentic 
areas. The mean Chl-a concentration predicted by the model was 17.34μg.L-1, similar to 
the observed value in situ (16.32μg.L-1). Overall, the empirical model developed can be 
applied as a tool to reduce costs and efforts in fi eldwork measures and to understand 
eutrophication in this river-lake transition ecosystem.

Key words: Eutrophication, Inland waters, Phytoplankton blooms, Sentinel-2, Water 
quality monitoring.

INTRODUCTION
  E utrophication is one of the major threats to 
inland water quality. It is caused by excessive 
nutrient loads in the water body, leading to 
algal growth and fi sh kills (Paerl et al. 2003, Yu 
et al. 2017). Excess of nutrients in water bodies 
can increase phytoplankton blooms, which are 
commonly measured in terms of chlorophyll-a
(Chl-a) (Kosten et al. 2012). Chl-a concentration 
provides important information about water 
quality and its potential risks to human health, 
since some phytoplanktonic organisms, such as 
cyanobacteria, can produce toxic compounds 
(Lobo et al. 2009, Hanisch & Freire-Nordi 2015). 

Mirim lagoon is an important water resource 
in the extreme south of the state of Rio Grande 
do Sul (Brazil) and the second-largest water body 
with lacustrine characteristics in Brazil (Tormam 
et al. 2017). Th e lagoon is connected to the Patos 
lagoon by the São Gonçalo channel, which has 
a length of 76 km (see Fig. 1). This connected 
system forms one of the main transboundary 
watersheds in South America with extreme 
environmental and economic importance for 
both the Rio Grande do Sul state (Brazil) and 
Uruguay (Oliveira et al. 2015). Moreover, the Patos-
Mirim system is responsible for the drainage of 
an area of 200,000 km² and promotes strong 
impacts on the adjacent coastal area through 
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the freshwater and nutrients input (Hirata et al. 
2010). In this context, the transition between the 
river and the lagoon systems is a critical zone 
for water quality. Transition zones are regions 
where hydrological conditions switch from river-
dominated to lake mixing processes (Thornton 
et al. 1990), and it is responsible for a series 
of environmental problems. Nutrients derived 
from the basin are responsible for a significant 
proportion of the lake’s productivity, which is 
enhanced by anthropogenic inputs (Wang et al. 
2019). Currently, the São Gonçalo channel has 
been impacting the water quality of the Mirim 
lagoon. Albertoni et al. (2017) showed that the 
São Gonçalo channel is eutrophic with a high 
probability of cyanobacterial bloom. Furthermore, 
Mirim lagoon also has several agricultural areas 

in its surroundings, increasing nutrient load in 
the water. Therefore, in periods of low rainfall, it 
is common to find algae accumulation at some 
specific points (Fernandes et al. 2007). In the 
estuary, agricultural activities contribute to the 
input of fertilizers (Tormam et al. 2017), nutrients 
(Grutzmacher et al. 2008), chemicals and organic 
phosphates fertilizers in the Mirim lagoon (Fia et 
al. 2009).

While traditional water sampling supports 
the understanding of biophysical factors 
that control algae blooms, there is a lack in 
understanding its spatial dynamics in this large 
lagoon (3,739 km2). Thus, optical remote sensing 
has become an alternative to support inland 
water studies (Gholizadeh et al. 2016). Due to 
the wide range of imaging and high frequency 

Figure 1. Location of the Mirim lagoon in Southern Brazil. R (4) G (3) B (2) composition of the Mirim lagoon image 
from the MSI sensor onboard the Sentinel-2 satellite acquired on October 15, 2018.
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of data acquisition, optical sensors constitute a 
continuous monitoring tool, having the potential 
to complement conventional in situ monitoring 
approaches (Palmer et al. 2015, Fassoni-Andrade 
et al. 2017). Algae pigments are Optically Active 
Components (OAC) and absorb electromagnetic 
radiation in specific wavelengths (Kirk 1994, 
Lobo et al. 2009). In the last decades, remote 
sensing techniques have enabled the bio-optical 
characterization of aquatic environments and 
the estimation of water constituents (Bukata et 
al. 1981, Mertes et al. 1993, Dekker et al. 1996, 
Gitelson et al. 2003, Mishra & Misha 2012, Li et al. 
2015, Watanabe et al. 2018, Martins et al. 2019). 
Inland waters and lakes are optical complex 
environments, which make them a challenging 
environment to retrieve accurate information 
about biogeochemical parameters using remote 
sensing techniques (Pierson & Strombeck 2000). 

Algorithms to determine Chl-a using remote 
sensing were first created for open ocean waters, 
where the phytoplankton and its byproducts 
control the optical properties (Palmer et al. 
2015). Therefore, when employed in waters that 
are influenced by other OAC, such as coastal and 
turbid inland waters, these algorithms tend to 
not perform as well as expected (Matthews 2011, 
Palmer et al. 2015). In recent years, algorithms 
based on remote sensing were developed to 
estimate Chl-a concentration in turbid and 
nutrient-laden waters, typical of inland waters 
(Yacobi et al. 2011, Beck et al. 2016). Among 
these algorithms, empirical and semi-empirical 
methods have been developed (Le et al. 2009, 
Gilerson et al. 2010, Yacobi et al. 2011, Vazyulya 
et al. 2014). The empirical algorithms represent 
effective data optimization but they are limited 
in terms of generalization in time and space 
(Odermatt et al. 2012). Empirical and semi-
empirical algorithms were developed using 
statistical regressions comparing reflectance 
satellite data with in situ data of limnological 

parameters (Ogashawara 2015). However, 
empirical algorithms are typically developed 
with different spectral bands and limnological 
data without prior knowledge, while the semi-
empirical algorithm uses bio-optical information 
for modelling the best relationship between 
radiometric and limnologic data (Ogashawara 
2015). These algorithms were developed and/
or applied in shallow lakes (Palmer et al. 
2015), reservoir (Randolph et al. 2008), inland, 
estuarine and coastal waters (Moses et al. 2009), 
lakes (Gilerson et al. 2010), gulfs (Vazyulya et al. 
2014) and estuary (Fassoni-Andrade et al. 2017).

Augusto-Silva et al. (2014) investigated 
remote sensing based algorithms to estimate 
Chl-a concentrations in tropical inland 
reservoirs. The authors found that the spectral 
resolution of MEdium Resolution Imaging 
Spectrometer (MERIS) was successful to estmate 
Chl-a when combining them with empirical 
calibration. Similarly, empirical algorithms were 
developed by Fassoni-Andrade et al. (2017) in the 
Patos Lagoon estuary. The authors developed 
suspended solids (SS) and Chl-a models for 
Landsat-8 Operational Land Imager (OLI) sensor 
data, applying Linear Spectral Mixing Model. The 
proposed empirical models were developed 
using simple and multiple linear regressions 
between in situ and radiometric data. The 
standard bio-optical algorithms from satellite 
radiometric measures are often limited to the 
region’s characteristics of which they were 
developed or also for a specific optical water 
type. Therefore, when applied to different and 
dynamics environments, they can cause errors 
in the estimation of the parameters. Therefore, 
develop local empirical algorithms with data 
measured in situ are necessary (Vazyulya et 
al. 2014). According to Palmer et al. (2015),  the 
advances in optical orbital sensors offers a 
scientific prospect regarding inland water 
research. This new generation of sensors 
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includes the Multispectral Imager (MSI), onboard 
the Sentinel-2 satellite, which has spatial and 
spectral resolutions suitable for studying inland 
waters, presenting a opportunity for the study 
of small lakes due to these sensor resolutions 
(Toming et al. 2016).

The Mirim lagoon provides socio-economic 
and ecological activities in Southern Brazil 
(Fernandes et al. 2007), but this lagoon is still 
poorly monitored, especially in the case of Chl-a 
concentration. This study evaluates the Chl-a 
modeling in the Mirim Lagoon using Sentinel-2 
MSI image and provides the preliminary 
assessment of Sao Gonçalo channel influence on 
the water quality of the lagoon. In addition, this 
paper presents the procedure for Chl-a modeling 
by combining Sentinel-2 MSI reflectance data 
and in situ measurements in the Northern 
Mirim lagoon, in order to understand the spatial 
variability of Chl-a. This mapping of Chl-a may 
help in the management, evaluation, monitoring 
and inspection actions in the Mirim lagoon.

MATERIALS AND METHODS

Sentinel-2 MSI image data
The MSI sensor, onboard the Sentinel-2 satellite, 
provides 12-bit radiometric resolution, 10m, 
20m, and 60m spatial resolutions and 13-band 
spectral resolution, with widths ranging from 
15nm to 180nm (Drusch et al. 2012). Sentinel-2 
MSI image of the study area was obtained on 
October 15, 2018 (Fig. 1). Data is available from the 
European Space Agency (ESA) (https://scihub.
copernicus.eu/). The image is delivered in Level-
1C, on Top-Of-Atmosphere (TOA) reflectance. For 
accomplishing OACs analyzis, it was necessary 
to pre-process the image, performing an 
atmospheric correction (AC), converting it from 
TOA reflectance to Bottom-Of-Atmosphere (BOA) 
reflectance. The AC algorithm used was Sen2Cor, 

and is accessible on SNAP (Sentinel Application 
Platform) software. This algorithm was specially 
developed for the processing and analyzis of 
Sentinel’s mission products (STEP, 2018). Sen2Cor 
uses auxiliary data such as look-up tables 
and atmospheric radiative transfer models to 
classify the image in 12 different classes (e.g. 
water, vegetation, clouds, cirrus). The output of 
the algorithm is an image in BOA reflectance 
and Quality Indicators of the correction (Ansper 
& Alikas 2018). 

Sen2Cor has been showing good results 
for being a practical method, tested in several 
validation studies in different regions of the 
world with different water types (Toming et al. 
2016, Ruescas et al. 2016, Martins et al. 2017, 
Main-Knorn et al. 2017, Sola et al. 2018, Warren 
et al. 2019). Warren et al. (2019) tested six AC 
algorithms over 13 inland water bodies, showing 
that none of the models performed well over 
the entire band set (444 to 865 nm). Despite 
that Sen2Cor was not the best one AC method 
tested, results were satisfactory for inland 
waters. Ruescas et al. (2016) compared Sen2Cor 
with other AC methods in lakes (Spain and Peru-
Bolivia) and demonstrated that the method was 
consistent for inland waters. Our study is the 
first application of Sen2Cor algorithm in lagoons 
over Southern Brazil. Once in situ reflectance 
measurements were not available, we were not 
able to compare and evaluate the performance 
of Sen2Cor algorithm. However, to demonstrate 
that the AC performed well, we compared 
Sen2Cor results with the results from another AC 
method, the Image correction for atmospheric 
effects (iCOR). The iCOR algorithm is an AC 
tool that can process satellite data collected 
over coastal, inland or transitional waters and 
land, and supports the inter-comparison of 
AC approaches. More details of the algorithm 
can be found on De Keukelaere et al. (2018). 
The algorithm was validated for coastal and 
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inland waters by De Keukelaere et al. (2018), 
where the assessment of iCOR for inland and 
coastal waters showed reasonable results for 
Landsat-8 and Sentinel-2 satellites. After the AC, 
the reflectance at each pixel corresponding to 
the in situ collection point were selected from 
different MSI/Sentinel-2 sensor bands based 
on single pixel extraction, allowing to correlate 
these data with the concentrations found on 
field.

Data collection and laboratory analyzis
In situ data was collected on October 16th, 
2018, period considered of high rainfall rates 
in the region (Souza 2015). Fifteen points were 
sampled over the Northest Mirim lagoon (Fig. 
1), area directly affected by the São Gonçalo 
channel. The coordinates of the points were 
measured using a GARMIN GPS navigation 
model GPSmap 60CSx. For the Chl-a, at each 
point, 1 liter of surface water at a depth of 
0.30m was collected. It was placed in amber 
glass, to avoid contact with sunlight, and kept 
under refrigeration. The average wind speed 
remained relatively low during the collection 
period, being of approximately 13.5km.h-1 
(AGROMET 2018), which reduces the possible 
variability of the constituent’s concentration 
since the moment of the image acquisition. The 
sample analyzis was performed in the Water 
Laboratory of the Chemical Engineering Course 
of the Federal Institute of Education, Science and 
Technology Sul-rio-grandense/IFSul - Campus 
Pelotas. The method used for determining 
Chl-a concentration in the phytoplankton 
was the spectrophotometric, according to the 
methodology described in APHA (2005), and Eq. 
1 was used to calculate Chl-a concentration. 
In addition to the Chl-a concentration, pH, 
through a pH meter, and phosphorus, by the 
Molybdovanadate method, were also estimated. 
All the parameters evaluated in this study 

were analyzed using descriptive statistics: 
mean, median, minimum and maximum values, 
standard deviation and coefficient of variation 
(CV).

( ) ( )-1
664 750

1000*-  . 26,7* - * µ =
VChl a g L A A

S

 
(1)

where, (A664 - A750) is the difference in 
absorbances read at 664nm and 750nm; V is the 
volume of the extract in mL; and S is the volume 
of the filtered sample in mL.

Empirical and semi-empirical model for Chl-a 
estimation
As mentioned, a wide range of algorithms for 
Chl-a retrieval have been developed. Mishra & 
Mishra (2012) developed a normalized difference 
chlorophyll index (NDCI) in order to predict the 
concentrations of Chl-a  in turbid productive 
estuarine and coastal waters using remote 
sensing data. Accurate correlations between 
Chl-a concentrations and two (2BDA) and three-
band (3BDA) combinations in the near red and 
infrared regions have been reported by Moses 
et al. (2009) and Dall’Olmo & Gitelson (2005), 
respectively. Therefore, before generating an 
empirical model for Chl-a estimation in the 
Mirim lagoon, we tested these three semi-
empirical algorithms that are based in the red 
or near-infrared (NIR) reflectance and are well 
known in the literature, which are presented in 
Table I. These algorithms were developed for 
sensors other than MSI. So, in order to apply 
the algorithms with the Sentinel-2 images, we 
had to make small adaptations to the bands: 
the band centered at 708nm was replaced by the 
band at 705nm and the band centered at 753nm 
was replaced by the band at 740nm.

The presence of phytoplankton in water will 
imply strong absorption in the blue (wavelength 
range from 430 at 450nm) and in the red (630 at 
675nm) spectral regions, and higher reflectance 
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in the green spectral region, around wavelength 
550nm, and in the NIR region, around wavelength 
715nm, which is related to the scattering caused 
by phytoplankton cells (Curran & Novo 1988, 
Augusto-Silva et al. 2014). Thus, Chl-a can be 
detected using the spectral bands located in the 
blue, green, red or NIR regions of the reflectance 
spectrum (Blondeau-Patissier et al. 2014). In this 
way, two approaches for the empirical modeling 
were tested, single band and ratio bands, which 
were chosen based on other studies (Moses et 
al. 2009, Gilerson et al. 2010, Gurlin et al. 2011, 
Watanabe et al. 2015, Fassoni-Andrade et al. 
2017, Gholizadeh & Melesse 2017). The single 
bands from Sentinel-2 MSI image used were 
those which Chl-a has strong absorption, in the 
spectral region of blue (B2) and red (B4), and 
where it has a peak of reflectance, green (B3) and 
NIR (B8). The band ratio was applied between 
the single bands tested, and aims to normalize 
(reduce) the effects of other variables, such as 
the ratio red-NIR, which tends to reduce the 
reflection od sediment effects (Matthews 2011). 
The reflectance at each pixel corresponding to 
the in situ collection point was selected from the 
different Sentinel-2 MSI sensor bands, allowing 
to correlate these data with the concentrations 
found on the fieldwork.

The verification of the data normality was 
performed through the Kolmogorov-Smirnov 
(KS) non-parametric test. After checking the 

normality of the data, Pearson’s correlation 
coefficient (R) was used to verify the significant 
correlations (p < 0.05). From significant 
correlations, multiple regression was applied 
to establish empirical models. In the multiple 
regression analyzis, the “enter” method was 
used to include the independent variables in 
the model. Chl-a was used as the dependent 
variable, while the reflectance of single bands 
and band ratios that presented a significant 
correlation with the parameter were used as 
independent variables, generating an empirical 
model for Chl-a estimation. The final model 
selected was based on the best combination 
of statistical parameters and minor errors. The 
adjusted coefficient of determination (adjusted 
R²), the F-Test of significance (p < 0.05), the 
Root-Mean-Square Error (RMSE) and the Mean 
Absolute Error (MAE) (Dill Hinnah et al. 2014), 
were used to evaluate the performance of the 
generated models (Fassoni-Andrade et al. 2017).

RESULTS AND DISCUSSION
Inter-comparison of atmospheric correction 
methods
Fig. 2(a) shows the comparative assessment of 
surface reflectance values (ρw) from the Sen2Cor 
and iCOR AC methods. This cross-validation 
aims to ensure that the results obtained by 
Sen2Cor are consistently comparable with 

Table I. Semi-empirical algorithms to estimate Chl-a concentration.

Semi-empirical algorithm Equation Reference

NDCI
( ) ( )
( ) ( )

R 708 R 665
Chl a ~

R 708 R 665
−

−
+ Mishra & Mishra (2012)

3BDA 1 1
665 708 753Chl a ~ R R )*R− −− − Gitelson et al. (2003)

2BDA 1
665 708Chl a ~ R )*R−− Dall’Olmo & Gitelson (2005)
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another methods, in this case iCOR, which is an 
AC tool that was developed to process, besides 
others, inland waters and land (De Keukelaere 
et al. 2018). From Fig. 2(a), it can be observed 
that the Sen2Cor results are almost similar to 
iCOR for all bands tested, which is a positive 
measure for our study (R > 0.955 and RMSE < 
0.0014). Warren et al. (2019) showed that both 
processors showed improved performance 
when comparing to coastal and inland waters, 
and they suggested that these algorithms are 
better suited for AC over inland water. Fig. 2(b) 
shows the water spectrum in the 15 sampled 
points, comparing the TOA reflectance and 
surface reflectance after the Sen2Cor AC. The 
shape and magnitude after applying Sen2Cor 
AC coincides with the spectrum of typical water, 
with no scattering effect in blue band. As the 
image did not have high changes in Chl-a, such 
as flowering events, this signal at 660nm was not 
so evident. Also, the infrared bands show a low 
reflectance, which is reasonable and consistent 
for water.

Water Quality Parameters
The pH values were classified within the range 
required by Brazilian legislation (Brasil 2005) for 
“Class 2” (6 ≤ pH ≤ 9), which is the Mirim lagoon 
classification. Samples ranged from 7.00 to 
8.00 (Table II) , presenting neutral and slightly 
alkaline values. Determining the pH values is 
important since it interferes with the chemical 
phenomena of water and with the metabolism 
of aquatic organisms. The photosynthetic 
activities carried out by algae communities 
consume and remove carbon dioxide to produce 
oxygen, increasing the hydroxide levels in water 
and consequently, pH values (Sharip et al. 2014). 
According to Vieira (2011), pH values can reach 
9.0 in periods of high sunshine, which is related 
to algae photosynthetic activity in lakes and 
reservoirs with a high density of phytoplankton. 
Souza (2015) found similar pH values for the São 
Gonçalo channel, 6.8 for the high rainfall period 
(spring). This shows a similarity between the 
water quality of the São Gonçalo channel and 
the Northern Mirim lagoon. Chl-a concentrations 
in the lagoon varied considerably between 
the points sampled, with  a CV of 0.83. The 

Figure 2. (a) Comparison of surface reflectance (ρw) between Sen2Cor and iCOR products across the lagoon; (b) 
Comparison between Sen2Cor surface reflectance and Top-of-Atmosphere (TOA) reflectance.
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minimum concentration of Chl-a was 3.56μg. L-1, 
while the maximum was 56.07μg.L-1 (Table II). 
This variation can be justified by the distance 
between the sampling points, resulting in 
distinct concentrations due to the different 
environmental characteristics of the lagoon. 
Overall, the values were high, but still within 
the range required by Brazilian legislation 
(< 30μg.L-1). In an estuary near Mirim lagoon, 
Fassoni-Andrade et al. (2017) found low values of 
Chl-a in the winter period for the Patos lagoon 
(~ 2.93μg.L-1). An increase in concentrations is 
expected as summer approaches, where there 
is a greater algae bloom due to the higher water 
temperature. The mean value for phosphorus was 
0.12 mg.L-1 (Table II), higher than the acceptable 
limit established by Brazilian legislation (0.050 
mg.L-1). High phosphorus values may be related 
to a high Chl-a concentration, since it is one 
of the nutrients that support the increase in 
primary productivity, resulting in the growth 
of algae. Fia et al. (2009) also found very high 
phosphorus values in Mirim lagoon and its 
tributaries, characterizing these watercourses 
as hypereutrophic due to high concentrations of 
organic matter and nutrients (Lamparelli 2004, 
CETESB 2007). Nutrients such as phosphorus 
bioavailable form are an important factor to 
affect water quality (Şener et al. 2013), playing 

an important role in eutrophication processes 
on shallow waters (Soulsby et al. 2001).

The Northern Mirim lagoon is connected 
to the São Gonçalo channel, a fact that directly 
influences the water quality dynamics in this 
region. The channel is a natural outlet from 
Mirim lagoon waters, yet in some conditions 
(precipitation, water volume in the lagoons, 
wind speed, and direction) the flow direction 
may become reverse, flowing from the Patos 
lagoon to the Mirim lagoon (Souza 2015). This 
transition zone has an impact on water quality. 
The high Chl-a and phosphorus concentrations 
found at some points in this study indicate the 
eutrophication potential of these waters. Both 
water bodies (São Gonçalo channel and Mirim 
lagoon) are surrounded by agricultural areas 
which entail nutrient enrichment in the water, 
provoking algae blooms. The water dynamics 
in this region are complex, with an exchange of 
water from the channel to the lagoon in some 
cases, but the main direction being from the 
lagoon to the channel. Souza (2015) analyzed a 
variety of water quality parameters in the São 
Gonçalo channel and observed that in the region 
near to the connection with the Mirim lagoon 
the quality was worse. These findings contribute 
to the understanding that water quality of these 
two watercourses have a direct influence on one 
another.

Table II. Descriptive statistics of the data obtained in the study.

pH Chl-a (µg.L-1) Phosphorus (mg.L-1)

Mean 7.71 16.32 0.12

Minimum 7.00 3.56 0.03

Median 7.80 11.57 0.10

Maximum 8.00 56.07 0.34

Standard deviation 0.30 13.48 0.08

Coefficient of variation (CV) 0.04 0.83 0.68
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Correlation between Chl-a and Sentinel-2 MSI 
data
In situ concentrations of Chl-a, band reflectance 
and band ratio were tested for normality by the 
Kolmogorov-Smirnov test. Bands B2, B3 and B4, 
and the ratio bands B3/B2, B8/B4, B4/B8, B8/
B3 e B3/B8 presented normal distribution (p > 
0.025). Table III shows the correlations between 
the Chl-a data collected in situ in Mirim lagoon 
and the reflectance of the spectral bands. Chl-a 
concentration presented a significant correlation 
(p < 0.05) with the B2, a spectral region with high 
absorption of this component (R = 0.61). Tebbs 
et al. (2013), using images from the Landsat ETM+ 
sensor, also found a reasonable correlation 
with the blue band (R = 0.40), a high correlation 
with the NIR region (R = 0.92) and a moderate 
correlation with the green band (R = 0.58). Zhang 
et al. (2011), using MODIS sensor data, found a 
poor correlation between Chl-a concentration 
and the reflectance in the visible region (R = 
-0.027 for the red band; R = 0.182 for the blue 
band; R = 0.195 for the green band; R = 0.468 for 
the NIR band).

Band ratios are used with the purpose of 
generating a greater amplitude in the effect 
of Chl-a. Chlorophyll recovery algorithms for 
turbid eutrophic waters often use bands at 

the wavelengths of red and NIR, capturing the 
reflectance limit of red, which is associated 
with the proliferation of dense surface algae 
(Gower et al. 2008, Gilerson et al. 2010). The 
ratio between the bands B4 and B8 showed a 
significant correlation with the concentrations 
of Chl-a (B4/B8 = -0.54 e B8/B4 = 0.56). Tebbs et 
al. (2013) evaluated that the B8/B4 ratio was the 
best correlation with Chl-a (R = 0.90). A significant 
correlation (R = -0.52) was also found between 
Chl-a and the B3/B8 ratio, wavelengths at which 
Chl-a has high reflectance. The B3/B2 presented 
the highest significant correlation with Chl-a 
(R = -0.75). This ratio highlights the differences 
between the two bands, increasing sensitivity to 
Chl-a and decreasing to SS, since Chl-a has an 
absorption region at the wavelength of blue and 
a maximum reflectance in green (Yacobi et al. 
2011). This spectral relationship has already been 
used in other studies that performed the same 
type of analyzis. Fassoni-Andrade et al. (2017) 
found a R = 0.86 between the Chl-a data and 
the B3/B2 ratio using Landsat-8 OLI sensor for 
the Patos lagoon. Brezonik et al. (2009) analyzed 
the correlation of Lansat-5 TM sensor bands 
with Chl-a data in a Northern US lake, finding 
that the best adjustments were for B2 (R = 0.76) 
and B3 (R = 0.73). Gholizadeh & Melesse (2017) 

Table III. Pearson’s correlation coefficient (R) between the Chl-a data analyzed in the Mirim lagoon and the 
reflectance of the spectral bands.

Parameter Band R

Chl-a (µg.L-1)

B2 (blue) 0.61*

B3 (green) 0.29

B4 (red) 0.47

B3/B2 -0.75*

B8 (NIR)/B4 0.56*

B4/B8 -0.54*

B8/B3 0.51

B3/B8 -0.52*

* The correlation is significant at the 0.05 level (2 extremities).
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analyzed the correlation between Landsat-8 OLI 
sensor bands and Chl-a concentration in the 
Bay of Florida, and found values ranging from 
R = -0.52 (B2/B8) to R = 0.60 (B8/B2) in the dry 
season, and R = -0.64 (B4/B8) to R = 0.65 (B2/B3) 
in the rainy season.

Modeling and mapping of Chl-a
Table IV shows the semi-empirical algorithms 
tested was very low (R between 0.042 and 0.052) 
for all models tested. This can be explained by 
the fact that  these algorithms were created for 
different lakes in other regions and also using 
other sensors. Mishra & Mishra (2012) proposed 
the NDCI to estimate the concentration of  Chl-a 
using  MERIS images in estuarine and coastal 
turbid productive waters. Another justification 
would be the not so high values of Chl-a found 
in Mirim lagoon, which may have contributed 
to a low correlation, since the semi-empirical 
algorithms were generated for very productive 
waters. With the low correlation by the semi-
empirical algorithms, the regression analyzis 
of multiple variables to establish an empirical 
model of estimation of Chl-a in Mirim lagoon was 
used, considering the significant correlations 
in Table III. Different independent variables 
(reflectance and ratios between Sentinel-2 MSI 
sensor bands) were combined to choose the 
best prediction model (Table V). All the different 
combinations obtained a high R, showing 
that there is a strong correlation between 
the dependent variable and the independent 
variables. This demonstrates that the models are 

efficient in predicting Chl-a from the selected 
independent variables. Model 2 showed the 
lowest RMSE and MAE values compared to the 
other models generated. Despite not presenting 
the highest adjusted R2 it was chosen because 
it presented a satisfactory correlation (R = 0.81 
and R2 = 0.65) and the smallest errors.

Fig. 3 presents the multiple regression and 
the equation for the chosen model. All band 
values varying from 0 to 1. Chl-a was mapped 
satisfactorily across the study area (Fig. 4) 
using the empirical model generated. Low 
concentrations of Chl-a were observed both in the 
Northern end as well as in the lowest left margin 
(red ellipses). The low concentration mapped in 
the Northern end of the lagoon may be related 
to a significant higher concentration of SS in this 
region (Albertoni et al. 2017), especially because 
of its high turbidity and eutrophic waters, which 
dominate the spectral signal, preventing the 
detection of Chl-a in the images (Härmä et 
al. 2001). The same factor can be associated 
to the low concentration predicted in the left 
margin, mainly due to the influence of land 
use and occupation in this region (agriculture) 
which promotes sediments input in this area. 
Yellow ellipses (Fig. 4) show high concentrations 
of Chl-a (from 15 to 40μg.L-1) representing 
shallower areas which average 3m deep (Munar 
et al. 2018), providing less water circulation and 
increasing primary productivity (Baumgarten et 
al. 1995). The highest concentration predicted 
by the model was 153.2μg.L-1, a value high above 
the maximum concentration found in situ 

Table IV. Pearson’s correlation coefficient (R) between semi-empirical algorithms and Chl-a in situ data.

Semi-empirical algorithm Reference R

NDCI Mishra & Mishra (2012) 0.042

3BDA Gitelson et al. (2003) 0.052

2BDA Dall’Olmo & Gitelson (2005) 0.043
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(56.07µg.L-1). This value, though, refers to only 
one pixel in the image, being the other values 
within the average observed in fieldwork data. 
The mean value predicted by the model was 
17.34μg.L-1, which is close to the field data actual 
mean value (16.32μg.L-1). Matthews et al. (2012) 
classify waters with Chl-a concentration < 20 
μg.L-1 from oligotrophic to mesotrophic waters. 
Thus, Mirim lagoon waters can be classified as 
mesotrophic, with moderate concentration of 
phytoplankton.

One of the phytoplankton functions is to 
regulate the primary productivity rate in aquatic 
ecosystems (Kosten et al. 2012). Changes in 
phytoplankton concentration interfere at all 
levels of the ecosystem food chain, altering 
the ecological balance and the water quality 
(Ferreira et al. 2017). A growing number of 
studies have been showing the importance of 
understanding Chl-a dynamics in water bodies, 
being a crucial parameter for water quality 
(Gücker et al. 2009, Cardoso et al. 2012, Katsiapi 
et al. 2012, Carneiro et al. 2014). Mirim lagoon is 
a water source for human supply, agriculture, 
livestock and recreation, but Chl-a is still poorly 
investigated in the region. Understanding Chl-a 
spatial distribution is essential to comprehend 
its variation throughout the lagoon in order 
to identify critical zones that demands more 
attention. Mapping of Chl-a concentration is 
also important to understand the impact of 
land use and occupation. We observed that 
different water constituents mapped from 

satellite images interfere in Chl-a concentration. 
This is accentuated in the transition zone from 
Mirim lagoon to São Gonçalo channel and in the 
lagoon margins, probably due to agricultural 
activities. It is also important to notice that 
climate changes in South America are expected 
to increase extreme events occurrence, which 
may also raise nutrient input from terrestrial 
to aquatic systems (Roland et al. 2012, Carneiro 
et al. 2014). Therefore, the model developed to 
map Chl-a in Mirim lagoon may work as a tool to 
support decision-making in the region, not only 
in the case of adaptation for climate change, but 
also in order to better understand the influence 
of changes in land use and occupation on water 
quality.

Some studies have explored water quality 
in the Mirim lagoon and its tributaries, including 
the São Gonçalo channel (Grutzmacher et al. 
2008, Coradi et al. 2009, Fia et al. 2009, Souza 
2015, Tormam et al. 2017), demonstrating a high 
potential of these waters for eutrophication due 
to nutrient enrichment. Despite being a proxy 
for phytoplankton and a eutrophication-related 
variable, Chl-a is still poorly understood in this 
region. This research focused on understanding 
Chl-a spatialization in the Northern Mirim 
lagoon, contributing to the comprehension 
of this variable and its effects on the region. 
Therefore, it may be used as a tool for water 
quality monitoring. Over the last years, remote 
sensing of inland has undergone significant 
advances (Palmer et al. 2015). However, some 

Table V. Statistics of Chl-a estimation models.

Model Independent variable R R2 Adjusted R2 p-value (F-Test) RMSE* MAE*

1 B2, B3/B2, B8/B4, B4/
B8, B3/B8 0.82 0.67 0.49 0.04 7.84 0.40

2 B2, B3/B2, B4/B8, B3/
B8 0.81 0.65 0.51 0.02 7.79 0.13

3 B2, B3/B2, B4/B8 0.80 0.65 0.55 0.008 7.80 0.14

* Unit of the variables in µg.L-1.
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challenges have still to be overcome, regarding 
mainly to AC accuracy and the understament 
of adjacent effects in tributaries (Ruddick et al. 
2006). Moreover, this study was conducted using 
a single image. In water quality studies using 
remote sensing, ideally the use of more images 
to generate the empirical model and validate 
it is recommended. However, the literature 
presents satisfactory results of correlation 
between field and modelled data using only 
a single image (Alcântara et al. 2009, Fassoni-
Andrade et al. 2017). Thus, it is important to 
point that the modelled Chl-a obtained in this 
study does not account for environmental 
changes in the lagoon, which can affect in situ 
conditions. On the other hand, the mapping of 
Chl-a concentration in the studied region is an 
important tool that allows to understand Chl-a
dynamics and its relations to land use and 
occupation. It also allows understanding the 
drivers that impact water quality in different 
regions of the lagoon, being an important tool 
to water monitoring and to support decision-
making. The developed empirical model allows 

the prediction of Chl-a without fieldwork 
measurements, utilizing satellite data. This is an 
important factor for the studied region since the 
Mirim lagoon is a large waterbody. 

CONCLUSIONS
Mirim lagoon is extremely important for the 
Southern of Brazil and for its neighbor country, 
Uruguay, since it is linked to the Patos lagoon for 
the São Gonçalo channel. Thus, understanding 
the water quality situation and dynamics is 
essential to a better management of these 
water bodies. From the Chl-a data measured in 
situ and refl ectance data from different spectral 
bands of the MSI sensor onboard the Sentinel-2 
satellite, it was possible to generate an empirical 
model to estimate the concentration of Chl-a
for the Northern Mirim lagoon. The performance 
of the generated model was satisfactory, which 
allows the spatialization of these parameters 
over the entire studied region.

This study shows the capability of an 
empirical model to estimate Chl-a concentration 

Figure 3. Predicted and 
observed values of 
Chl-a in the Northern 
Mirim lagoon.
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in the Mirim lagoon, even with limited in situ 
data. With this study, it is possible to analyze 
the spatial-temporal water dynamics much 
more efficiently, allowing public managers and 
surveillance agents to have a view of what 
happens around the lagoon, assisting inspection 
and mitigation actions.

For future studies, we recommend new in situ 
collection data to understand Chl-a dynamics 
in all the extension of the lagoon, combining 
fieldwork campaigns for validation of results 
in different periods of the year. Spectral in situ 
data collection would be recommended to test 
the AC as well. In general, the empirical model 
developed can be applied as a cost-effective 
tool to reduce the fieldwork measurements, as 
well as it can be used as a data source of Chl-a 
to understand eutrophication in this ecosystem.
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