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ABSTRACT

In this note we revisit E. Cartan’s address at the 1928 International Congress of Mathematicians

at Bologna, Italy. The distributions considered here will be of the same class as those considered

by Cartan, a special type which we call strongly or maximally non-holonomic. We set up the

groundwork for using Cartan’s method of equivalence (a powerful tool for obtaining invariants

associated to geometrical objects), to more general non-holonomic distributions.
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INTRODUCTION

Le vrai problème de la represéntation géométrique d’un système matériel non holonome consiste

[ · · · ] dans la recherche d’un schéma géométrique lié d’une maniére invariante aux propriétés

mécaniques du système.

Élie Cartan

In this article we revisit E. Cartan’s address (Cartan 1928) at the 1928 International Congress

of Mathematicians at Bologna, Italy. The distributions considered by Cartan were of a special type

which we callstronglyor maximally non-holonomic. Our aim is to set up the groundwork for using

Cartan’s method of equivalence (a powerful tool for obtaining invariants associated to geometrical

objects (Gardner 1989) to more general non-holonomic distributions.
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This is a local study, but we outline some global aspects. If the configuration spaceQ is a

manifold of dimensionn, its tangent bundleTQ should admit a smooth subbundleE of dimension

m, m < n. As it is well known, this imposes topological constraints onQ, see Koschorke 1981.

Although we will be discussing only local invariants, hopefully these will help constructing global

ones, such as special representations for the characteristic classes (Milnor and Stasheff 1974,

Postnikov et al. 1999).

Notation. Throughout this paper we follow consistently the following convention: capital roman

lettersI, J,K, etc. run from 1 ton. Lower case roman charactersi, j, k run from 1 tom (repre-

senting the constraint distribution). Greek charactersα, β, γ , etc., run fromm+1 ton. Summation

over repeated indices is assumed unless otherwise stated.

1. NON-HOLONOMIC CONNECTIONS

We fix a Riemannian metricg onQ and let∇ the associated Riemannian connection, torsion free

and metric preserving:

∇XY − ∇YX = [X, Y ] , X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉. (1.1)

In section 8 we consider an arbitrary affine connection (see Hicks 1965) onQ. Recall that

given a local frameeI on an open subsetW ⊂ Q and its dual coframeωJ , a connection∇ is

described by local 1-formsωIJ = −ωJI such that

∇XeJ = ωIJ (X) eI . (1.2)

The torsion tensor isT (X, Y ) = ∇XY −∇YX− [X, Y ] = tI (X, Y ) eI and expanding the left hand

side we get thestructure equations

dωI + ωIJ ∧ ωJ = tI . (1.3)

As the Riemannian connection∇ is torsion free,tI ≡ 0.

We assume heretofore that the frame isadaptedto the distributionE. This means{ei(q)} span

the subspaceEq, q ∈ Q, and the remaining{eα} span theg-orthogonal spaceFq = E⊥q .

Definition 1.1. The(Levi-Civita) non-holonomic connectiononE is defined by the rule

DXej = ωij (X) ei, (i, j = 1, ..., m) . (1.4)

Here we allowX to be any vectorfield onQ, not necessarily tangent toE. Notice that for

vectorfieldsY,Z tangent toE, the metric-compatibility

X〈Y,Z〉 = 〈DXY,Z〉 + 〈Y,DXZ〉 (1.5)

still holds.
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The motivation for Definition 1.1 is D’Alembert’s principle:Consider a mechanical system

with kinetic energy12g(ċ(t), ċ(t)) and applied forcesf , subject to constraints such thatċ(t) ∈ Ec(t).

The constraining force∇ċ(t)ċ(t) − f is g-perpendicular to the constraint subspaceEc(t), since it

does not produce work.

Unless otherwise mentioned, we assume there are no applied forces. The geodesic equations

are given, in Cartan’s approach, by

X = piei , DXX =
[
dpi

dt
+ pjωij (X)

]
ei = 0 . (1.6)

One may wish to see the equations explicitly. Choose a coordinate systemx on W ⊂ Q.

Definem3 functions (Christoffel symbols)"ijk(x) onW by

Dekej = "ijkei . (1.7)

Write

ċ(t) = pk(t)ek (1.8)

(some authors call thepk = ωk(ċ(t)) quasivelocities).

Proposition 1.2. The geodesic conditionDċċ = 0 yields a nonlinear system inn+m dimensions

for x andp given by

dxR

dt
= pk e

k
R(x),

dpj

dt
= −pipk "jik(x) . (1.9)

HereekR is theR-th component (1 ≤ R ≤ n) of thek-th E-basis vector (1 ≤ k ≤ m) in terms of

the chosen trivialization ofTQ.

The Christoffel symbols can be rewritten in terms of them3 datackij defined by

ckij = 〈 [ei, ej ] , ek〉 . (1.10)

In fact, compatibility with the metric (see (1.1) implies"jik = −"ijk, and torsion free implies

ckij = "kji − "kij . It follows that

"
j

ik =
1

2
( ckji − cikj − c

j

ik ) (1.11)

Inserting into the geodesic equations, and taking into account the symmetric and anti-symmetric

terms, we see that (1.9) can be rewritten as

dpj

dt
= −cikj pipk . (1.12)

In this formula we already observe the interplay between the Lie bracket stucture and the metric.
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2. AN EXAMPLE

Cartan’s viewpoint bypasses the traditional methods in constrained dynamics where Lagrange

multiplier terms are added to represent the constraint forces (just to be eliminated afterwards);

see Blajer 1995 and references therein. Moreover, when using the Euler-Lagrange equations, the

system of ODEs comes in implicit form unsuitable for being easily integrated numerically. In

Cartan’s approach all this information is embodied in the Christoffel symbols or equivalently in

the structure coefficients. Cartan’s approach provides an algorithmic way to derive the equations

of motion for nonholonomic systems:

i) Compute the adapted orthonormal basisei, e$, say, by the Gram-Schmidt procedure.

ii) Compute the structure coefficientscjik(x), taking Lie-brackets of the vectorfields.

Building up on the example in Cartan (1928, section 11) we start up the derivation of the

equations of motion for “Caplygin’s sphere”. Details of the derivation and a theoretical analysis

will be provided elsewhere.

Caplygin’s sphere is a dishonest billiard ball, namely, a non homogeneous sphere of radius

a and total massm = 1 (without loss of generality), with moments of inertiaI1, I2, I3, rolling

without sliping on a horizontal plane. The configuration space isR
2 × SO(3). It is assumed that

the center of mass coincides with the geometric center. Cartan considered only the homogeneous

(honest) casek = I1 = I2 = I3.

We follow Arnol’d’s notation (Arnol’d 1978), where capital letters denote vectors as seen from

the body. We denote byω the angular velocity viewed in the space frame, and$ the angular velocity

as viewed in the body frame, which we may assume attached at the principal axis of inertia. Thus

R$ = ω , whereR ∈ SO(3) is the attitude matrix. Intrinsically speaking, this corresponds toleft

translation in the Lie groupSO(3). LetQ, ‖ Q ‖= a, a material point in the sphere, viewed in the

body frame. Thus in space

q = RQ+ (x, y, a) . (2.1)

Computing the total kinetic energy

T = 1

2

∫
µ(Q) ‖ q̇ ‖2 dQ

yields, in the same fashion as in the rigid body with a fixed point,

2T = ( I$ , $)+ ξ2+ η2 (2.2)

whereξ = ẋ andη = ẏ are the cartesian components of the velocity of the geometric center.

The non-slip condition at the contact point in vector form is given by

( ξ , η) = aω × �z (2.3)
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that is,

E : ξ − aω2 = 0 , η + aω1 = 0 . (2.4)

Some comments are in order. Firstly, the componentω3 corresponds to pivoting around the contact

point, and therefore is arbitrary. In fact, this distributionE of three dimensional subspaces (m = 3)

in the five dimensional (n = 5) manifoldR2 × SO(3) is a realization of Cartan’s famous “2-3-5”

distribution (see “Les systèmes de Pfaff à cinq variables et les équations aux derivées partielles

du second ordre”, Cartan 1939). We observe that (2.4) could also be written in complex variables

notationξ + iη = −ai(ω1+ iω2), which motivates studying nonholonomic systems in the context

of pseudo-holomorphic bundles.

It is very important in our context is to observe that the constraints define a distributionE in

Q which is bothright SO(3)-invariant andR2-invariant. This brings us immediatelly to the issue

of integrability of nonholonomic systems, which was introduced in (Koiller 1992) and extensivelly

discussed in the colletanea by Cushman andŚniatycki 1998, also see Bates and Cushman, 1999.

There is a conflict between the leftSO(3) invariance of the Hamiltonian (2.2) and the rightSO(3)

invariance of the constraints (2.4). Whenk = I1 = I2 = I3, the Hamiltonian is also right-invariant,

2T = k2 ($2
1+$2

2+$2
3)+ ξ2+ η2 = k2 (ω2

1 + ω2
2 + ω2

3)+ ξ2+ η2

and the problem is amenable to full right reduction and becomes easily integrable.

In fact, for the homogeneous case we use theansatz

ω1/dt = Aξ + Bq , ω2/dt = Aη − Bp , ω3/dt = κ r (2.5)

ω4/dt = D(ξ − aq) , ω5/dt = D(η + ap) . (2.6)

The adapted basis is the dual basis of theωI (incidentally, we provide a correction to the coefficients

given in Cartan, 1928).

We compute 2T =∑5
I=1ω

2
I /dt

2:

2T = (A2+D2)(ξ2+ η2)+ (B2+ a2D2)(p2+ q2)+ κ2 r2+ 2(AB − aD)(ξq − ηp)

The mixed term is zero provided

D = AB/a (2.7)

If we also set

κ2 = B2(1+ A2) (2.8)

then

2T = m(ξ2+ η2)+ κ2(p2+ q2+ r2) (2.9)
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with

m = A2(1+ B2/a2) (2.10)

The free parameters here area, A andB. Another choice could be usinga, κ as the free

parameters,

A = a/
√
a2+ κ2 , D = κ/

√
a2+ κ2 , B = κ (2.11)

ω3/dt = I r , I = κ2+ a2κ2

a2+ κ2
(2.12)

so that

2T = (ξ2+ η2)+ I (p2+ q2+ r2) (2.13)

We now outline the procedure for the general case (also integrable) using Cartan’s programme.

To organize the calculations, we write the left invariant forms inSO(3) as

R−1 dR =



0 −$3 +$2

0 −$1

0


 dt . (2.14)

and we denote$(Ṙ) = (P,Q,R). The last entry follows the alphabet, and the reader will forgive

us for mixing up the notation in the left hand side.

Likewise, the right-invariant forms are

dR R−1 =



0 −ω3 +ω2

0 −ω1

0


 dt . (2.15)

and we denoteω(Ṙ) = (p, q, r). The relationR$ = ω corresponds formally to the adjoint

representation. Now, if one desires explicit formulas using, say, Euler angles, it is sufficient to

parametrizeR = R(θ, ϕ,ψ) and compute the left hand side of (2.14) and (2.15) in terms of the

dθ, dϕ, dψ.

It is worthy, however, to proceed as intrinsically as possible. Letf1, f2, f3 the right-invariant

vectorfields inSO(3) forming the dual basis for theω1, ω2, ω3. The constraint distributionE is

annihilated by the 1-forms

dx − aω2 dt , dy + aω1 dt

and by inspection, we observe that the vectors

f3 , f1− 1

a
∂/∂y , f2+ 1

a
∂/∂x (2.16)
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generateE. We complete to a basis ofTQ with the vectorfields∂/∂x , ∂/∂y .

Applying a Gram-Schmidt procedure on these vectors we get the basisei, e$, providing the

starting point for Cartan’s method. However, this preliminary step brings a certain amount of pain:

since the inner product〈 , 〉 associated toT is left, but not right invariant, the orthonormal basis is

neither left nor right invariant. Surprisingly, the system is still integrable. See Arnol’d et al. 1988.

To orthonormalize, we need the dual basis of the$1, $2, $3, that is, the left invariant vector-

fieldsF1, F2, F3 such that

(F1, F2, F3) R
−1 = (f1, f2, f3) . (2.17)

Thus in particular,f3 = R31F1+ R32F2+ R33F3 so that

‖ f3 ‖2= 1

2
(I1R

2
31+ I2R

2
32+ I3R

2
33) (2.18)

We define then:e1 = f3/ ‖ f3 ‖. In a similar fashion we computee2 = ẽ2/ ‖ ẽ2 ‖, where

ẽ2 = f1− 1

a
∂/∂y − 〈f3 , f1− 1

a
∂/∂y〉 f3

‖ f3 ‖2
. (2.19)

To compute the inner product we revert to the basis of left-invariant vectorfields via (2.17) and we

obtain

ẽ2 = (R11− R31
I1R31R11+ I2R32R12+ I3R33R13

I1R
2
31+ I2R

2
32+ I3R

2
33

) F1+ (....) F2+ (....) F3− 1

a

∂

∂y
(2.20)

It is clear that the calculations get increasingly involved but are within our powers.

3. GEOMETRIC INTERPRETATION

Direct and inverse “development” of frames and curves were so obvious to Cartan (and for that

matter, also to Levi-Civita) that he (they) did not bother to give details. Actually, inverse parallel

transport seems closest to their way of thinking. We elaborate these concepts, exhibiting explicitly

(Theorem 3.4 below) a system of ODEs producing at the same time, the solution of the non-

holonomic system, a parallel frame along it, and ahodograph representation of the solution curves

on the Euclidean spaceRm.

3.1. Direct parallel transport of a Eqo-frame.

A frame forEqo ⊂ TqoQ can be transported along a curvec(t) inQ. The “novelty” here (as stressed

by Cartan):c(t) is an arbitrary curve inQ, that isċ(t) does not need to be tangent toE.

Recall that given a tangent vectorV o = voj ej ∈ Eqo and a curvec(t) ∈ Q, c(0) = qo, there

is a unique vectorfieldV (t) ∈ Ec(t) , V (0) = V o such thatDċV (t) ≡ 0 . In fact, we are led to the

linear time-dependent system of ODEs


v̇1
...

v̇m


 = (ωji(ċ))




v1
...

vm


 (3.1)
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(usingDċej = −ωjk(ċ)ek and (1.6)). In particular, an orthonormal frame atEqo is transported to

Ec(t) and remains orthonormal.

3.2. Hodograph of a Ec(t)-frame to R
m.

Given a curve of frames forTQ alongc(t), {eI (t)}, consider the frame forEc(t) formed by the

firstm vectorsei . We have

∇ċei = −ωij (ċ) ej − ωiα(ċ) eα

We develop a “mirror” or hodograph frame {U(t) : u1(t), · · · , um(t)} confined to

R
m ≡ Eqo, qo = c(0), solving the system forU(t) ∈ O(m) given by

u̇i = −ωik(ċ(t))uk , ui(0) ≡ ei(qo) . (3.2)

Equivalently (by elementary matrix algebra)

U−1 U̇ = (ωij ċ(t)) , U(0) = Id (3.3)

whereui are the columns ofU .

Lemma 3.1. Let {U(0) : ui(0) = ei(0)} a frame forEqo . The hodograph of its direct paralel

transport {e1(t), · · · , em(t)} alongc(t) is the constant frameU(t) ≡ U(0) = Id .

Proof. This is becauseDċei(t) ≡ 0 iff ωij (ċ(t)) ≡ 0. �

Proposition 3.2. LetU(t) a curve of frames inRm. Define a frame{ê1(t), · · · , êm(t)} for Ec(t)

by

(ê1, · · · , êm) = (e1, · · · , em)U (3.4)

where{e1, · · · , em} is parallel alongc(t). Then

i) ê1, · · · , êm satisfiesDċêj = −ωji êi with
(
ωij
) = U−1U̇ .

ii) The hodograph of̂e1, · · · , êm to R
m isU(t).

Proof. It sufficies to prove i) and it is simple:

Dċ(ê1, · · · , êm) = (e1, · · · , em) U̇ + (Dċe1, · · · ,Dċem)U

= (e1, · · · , em) U̇ = (e1, · · · , em)U U−1 U̇ = (ê1, · · · , êm)(ωij )

�
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3.3. Hodograph to R
m of a curve c(t) inQ.

Considerc(t), a curve inQ, c(0) = qo. As before, it is not assumed thatċ(t) is tangent toEc(t).

Let {eI : e1(t), · · · , en(t)} a local orthonormal frame forTqQ alongc(t)with {e1, · · · , em} tangent

toEq . DenoteωI , I = 1, · · · , n the dual basis. Construct first the hodograph{u1(t), · · · , um(t)}
of {e1, · · · , em} to R

m, and then define

γ (t) =
∫
ċ

θ =
∫ t

0
[ω1(t)u1(t)+ · · · + ωm(t)um(t)] dt . (3.5)

whereθ is an 1-form with values inRm given by

θ = ωiui (3.6)

and for short we wroteωi(t) = ωi(ċ(t)).

The curveγ (t) in R
m ≡ Eqo , is called thehodographof c(t) to R

m. If e1(t), · · · , em(t) are

parallel alongc, thenγ (t) is given by

γ (t) =
(∫ t

0
ω1 dt , · · · ,

∫ t

0
ωm dt

)

taking the coordinate axis ofRm alongu1(0) ≡ u1(t), · · · , um(0) ≡ um(t).

3.4. Development onQ of a curve γ (t) ∈ R
m ≡ Eqo

On the other direction,

Proposition 3.3. Given a curveγ (t) in R
m ≡ Eqo , we can construct a unique curvec(t) in Q

tangent toE whose hodograph isγ (t). The curvec(t) is called the development ofγ (t).

Proof. First, extend anEqo-adapted basis forTqoQ in a neighborhoodq ∈ W ⊂ Q, with

corresponding formsωIJ , I, J = 1, · · · , n. Then consider the vectorfield inW ×O(m) given by

X =
m∑
i=1

(
U−1 γ̇ (t)

)
i
ei , U̇ = U(ωij (X)) , c(0) = qo , U(0) = id . (3.7)

Integrating this vectorfield we obtain a curve(c(t), U(t)).

We claim that the hodograph ofc(t) is γ̂ (t) = γ (t) (the vectorfield was constructed precisely

for that purpose). Indeed, by the previous item,

γ̂ (t) =
∫ t

0
[U−1γ̇ (t)]1 u1 + · · · + [U−1γ̇ (t)]m um(t)] dt . (3.8)

so that
˙̂γ = [U−1γ̇ (t)]i ui

which is equal toγ̇ by elementary linear algebra: ifv is any vector andU any invertible matrix,

v = (U−1v)iui , whereui are the columns ofU (U is the matrix changing coordinates from the

basisui to the canonical basis). �
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What if we had used a different frameeI onU? We would get a system of ODEs

Y =
m∑
i=1

(
T −1 γ̇ (t)

)
i
ei , Ṫ = T (ωij (Y )) , c(0) = q, T (0) = id (3.9)

and we claim thatY = X so the curvec(t), is unique.

To prove this fact it equivalent to show thatT = UP whereP changes basis fromei, i =
1, · · · ,m to ei, i = 1, · · · ,m , that is

(e1, · · · , em) = (e1, · · · , em) P . (3.10)

We compute

T −1Ṫ = (UP )−1(UṖ + U̇P )

= P−1Ṗ + P−1(U−1U̇ )P = P−1Ṗ + P−1(ωij )P

which is indeed the gauge-theoretical rule giving the forms(ωij ) of the basisei definingT from

the forms(ωij ) of the basisei .

We can upgrade this construction to provide a parallel frame alongc(t), by declaringωij ≡ 0.

This gives

Ṗ + (ωij (X))P = 0 . (3.11)

which could be added to system (3.7). Actually, we can take the equation forU out of that system,

observing thatU = P−1 (Proof: d
dt
U−1 = −U−1U̇U−1 = −(ωij )U−1 ).

Theorem 3.4. Given a curveγ (t) ∈ R
m, consider the nonautonomous system ODEs in the frame

manifoldFr(E) given by

X =
m∑
i=1

(P γ̇ (t))i ei , Ṗ = (−ωij (X))P , c(0) = q, P (0) = id . (3.12)

It gives the developed curvec(t) onQ and an attached parallel frame

(e1, · · · , em) = (e1, · · · , em) P . (3.13)

For a line γ (t) = t v passing through the origin inRm we obtain the non-holonomic geodesic

starting atq with velocityċ(0) = v.

3.5. Hodograph of the D’Alembert-Lagrange equation

We elaborate on the comments of §7 in Cartan 1928 [“La trajectoire du système matériel, supposé

soumis à des forces données de travail elémentaire
∑
P iωi , se développe suivant la trajectoire

d’un point matériel de masse 1 placé dans l’espace euclidien àm dimensions et soumis à la force

de composantesP i .”]. Consider a mechanical system with kinetic energyT and external forces
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F (written in contravariant form, we lower indices using the metric so thatF ∈ TQ), subject to

constraints defined by the distributionE. The non-holonomic dynamics is given by

Dċċ = F ‖ (3.14)

where the right hand side is the ortogonal projection ofF overE.

Let γ be the hodograph ofc. Fix aconstant framef 1 , · · · , f m onR
m and write

γ (t) =
∑
i

γi(t)f i .

Let ei be the parallel frame alongc(t) obtained in Theorem 3.4. Decompose

F ‖ = fiei . (3.15)

Corollary 3.5. (Cartan 1928, §7).Equation (3.14) is equivalent to

γ̈i(t) = fi(c(t)) . (3.16)

Equations (3.16) should be solved simultaneously with (3.12) and (3.13).

This approach can be helpful for setting up numerical methods, and in some cases reducing

the non-holonomic system to a second order equation onR
m. We also observe thatF can represent

non-holonomic control forcesactuating over the system, as those studied in Krishnaprasad et al.

1996.

4. EQUIVALENT CONNECTIONS

In this section and the next we discuss the question of whether two non-holonomic connectionsD

andD onE have the same geodesics.

GivenA ∈ GL(n−m),C ∈ O(m), B ∈ M(m, n−m), we take

ωα = Aαλωλ , ωi = Cikωk + Biλωλ (4.1)

This is the most general change of coframes preserving the sub-Riemannian metric

gsub = ω2
1 + · · · + ω2

m (4.2)

supported onE. The corresponding dual frameeI satisfies

ej = eiCij , eα = eiBiα + eλAλα (4.3)

(here, for ease of notation we place scalars after vectors).

In matrix form, we have

ω =
(
C B

0 A

)
ω , ω =

(
ωi

ωα

)
(4.4)
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(e1, · · · , en) = (e1, · · · , en)
(
C B

0 A

)
. (4.5)

Using matrix notation is not only convenient for the calculations, but also to set up the equiv-

alence problem (Gardner 1989). Consider the linear groupG of matrices of the form

g =
(
C B

0 A

)
, C ∈ O(m),A ∈ GL(n−m),B ∈ M(m, n−m). (4.6)

The equivalence problem for sub-Riemannian geometry can be described as follows: Given

coframes$V = ($1
V , · · · , $n

V)
t andωU = (ω1

U , · · · , ωnU )t on open setsU andV, find invariants

characterizing the existence of a diffeomorphismF : U → V satisfyingF ∗$V = g · ωU . For

sub-Riemannian geometry, see Montgomery 2001.

In non-holonomic geometry we are lead to a more difficult equivalence problem (see section

6.3 below). In Cartan’s 1928 paper, the non-holonomic connections are characterized only for

a certain type of distributions, which we will callstrongly non-holonomic. Interestingly, Cartan

did not work out the associated invariants, even in this case. He focused in finding a special

representative in the equivalence class of connections with the same geodesics.

Consider the modified metric onQ

g = ω1
2+ · · · + ωn

2 (4.7)

and the associated Levi-Civita connectionD. The geodesic equation is

T = sj ej , DT T =
[
dsj

dt
+ skωjk(T )

]
ej = 0 . (4.8)

To compare (4.8) and (1.6), there is no loss in generality by takingC = id. By inspection one

gets:

Proposition 4.1. (Cartan 1928, §5.)Fix C = id. The geodesics ofD andD are the same iff

ωij (T ) = ωij (T ) (4.9)

for all T tangent toE.

5. PFAFFIAN SYSTEMS AND LIE ALGEBRAS OF VECTORFIELDS

5.1. Equivalent 1-forms

In view of (4.9) it seems useful to introduce the following

Definition 5.1. Two 1-formsω1 andω2 areE-equivalent ifω1 − ω2 anihilatesE. We write

ω1 ∼E ω2 or simplyω1 ∼ ω2.
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In theC∞(Q)-ring of differential formsD∗(Q), consider the idealI generated by the 1-forms

ωα, α = m+ 1, · · · , n.We can write

E = I⊥ (5.1)

where the superscript⊥ means “objects annihilated by”.

Clearlyω1 ∼E ω2 is equivalent toω1− ω2 =∑ fα ωα ∈ I. More generally, two k-formsω1

andω2 are said to beE-equivalent if their difference vanishes when one of the slots(v1, · · · , vk) is

taken onE. Again, this means thatω1−ω2 ∈ I. (In fact, given a Pfaffian system of 1-forms onQ

θ1 = 0, · · · , θr = 0,

one can form the idealI onD∗(Q) generated by these forms. Every form that is annulled by the

solutions of the system belongs toI, see Choquet-Bruhat et al. 1997, p.232).

If ω1 ∼E ω2 it does not necessarily follow thatdω1 ∼E dω2. For the later to happen, the

former must be equivalent over a larger subspace,(I1)⊥ ⊃ E which we now describe.

5.2. Filtrations in TQ and in T ∗Q

For background and a comprehensive review of the theory, see, e.g., Vershik and Gershkovich 1994.

Let I a Pfaffian system.

Definition 5.2. The derived systemD(I) is

I(1) = D(I) =
{
θ =

r∑
i=1

aiθi | dθ ∈ I
}

(5.2)

One constructs (see Bryant et al. 1991) the decreasingfiltration

· · · ⊂ I(2) ⊂ I(1) ⊂ I(0) = I

defined inductively byI(k+1) = (I(k))1.

HereI is thought as a submodule overC∞(Q) consisting of all 1-forms generated by the

θi . We assume all have constant rank. The filtration eventually stabilizes after a finite number

of inclusions, and we denote this spaceIfinal. By Frobenius theorem, the Pfaffian systemIfinal is

integrable. Fix a leafS and consider the pull back of the filtration. That is, we pull back all forms

by the inclusionj : S → Q. The filtration associated toj ∗I stabilizes at zero.

There is a dual viewpoint, more commonly used in non-holonomic control theory (Li Z and

Canny 1993): given a distributionE in TQ one considers an increasing filtration

Eo = E ⊂ E1 ⊂ E2 ⊂ · · ·

Two (different) options are used by workers in this area:

An. Acad. Bras. Cienc., (2001)73 (2)



178 JAIR KOILLER, PAULO R. RODRIGUES and PAULO PITANGA

1) Ei = Ei−1+ [Ei−1, Ei−1] .
2) Ei = Ei−1+ [Eo,Ei−1] = Ei−1+∑j+k=i−1[Ej,Ek] .

We follow the first option, which is recursive, and yields faster growth vectors. Moreover, the

following fundamental duality result is easy to prove:

Lemma 5.3. I(1) = E⊥1 (equivalentlyE1 = (I(1))⊥ ).

Proof. LetX, Y,Z ∈ E. Observe thatθ ∈ I1 iff (check why)

θ(X + [Y,Z]) = 0 .

Well, θ(X) = 0 by default and (the correct signs do not matter)

θ [Y,Z] = ±dθ(Y, Z)± Zθ(Y )± Yθ(Z) = 0

asθ(Y ) = θ(Z) ≡ 0 becauseθ ∈ I anddθ(Y, Z) = 0 becauseθ ∈ I1. �

6. MAIN RESULT

6.1. Strongly Non-Holonomic Distributions

The main question to be addressed in the local theory is the following. Assume that the geodesics

of two Levi-Civita non-holonomic connectionsD andD are the same. Proposition 4.1 says that a

necessary and sufficient condition for this to happen isωij ∼E ωij .

What are the implications of this condition in terms of the original coframesω = (ω1, · · · , ωn)
andω = (ω1, · · · , ωn)? The answer is that it depends on the type of distributionE.

One extreme: supposeE is integrable, that isI(1) = I. There is a foliation ofQ by m-

dimensional manifolds whose tangent spaces are the subspacesEq . Then it is clear that there are

no further conditions. We can change the complementF = E⊥ without any restriction, and the

metric there. In fact, we can fix a leafS and the Levi-Civita connection onS will coincide with the

projected connection, no matter whatg is outsideE.

The other extreme is the case studied in Cartan 1928:

Definition 6.1. We say that the distributionE is of thestronglyor maximally non-holonomic

typeif the derived Pfaffian system associated toE is zero.

In the modern terminology one says that the nonholonomicity degree is 2. We now prove

Theorem 6.2. (Cartan 1928, §5.)In the strongly nonholomic case, the metricsg andg must have

the same complementary subspaces. In other words:B ≡ 0. Thus

F = E⊥

is intrinsecally defined.
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Proof. Cartan used an argument that we found not so easy to decipher (see (6.6) on section 6.2

below). Thus we prefer to use a different argument to show thatB ≡ 0. We start with the structure

equation

dωi = −ωij ∧ ωj − ωiα ∧ ωα
Sinceωij ∼E ωij andωj ∼E ωj (see Equation (4.1) withC = I) this implies

dωi ∼E dωi (6.1)

Now Equation (6.4) yields

dωi = dωi + dBiλωλ + Biλdωλ

and this inocently looking expression, together with (6.1) yields

Biλdωλ ∼E 0 or equivalently Biλdωλ ∈ I. (6.2)

Hence if the distribution is of strongly non-holonomic type thenB ≡ 0. �

6.2. Digression

The following calculations are actually never explicitly written in Cartan 1928, it seems that Cartan

does something equivalent to them mentally. A caveat: the connection formsωIJ are antisymmetric

in the indicesI, J but in general this will not be the case for the formsωIJ below. If desired, they

will have to be antisymmetrized (a posteriori).

We begin by differentiating

dω =
(
C B

0 A

)
dω +

(
dC dB

0 dA

)
ω

dω =
{(

C B

0 A

)
(−ωIJ ) +

(
dC dB

0 dA

)}(
C−1 −C−1BA−1

0 A−1

)
ω

(−ωIJ ) =
(
C B

0 A

)
(−ωIJ )

(
C−1 −C−1BA−1

0 A−1

)
+

+
(
dC dB

0 dA

) (
C−1 −C−1BA−1

0 A−1

) (6.3)

(to be antisymmetrized)

The block(−ωij ) is given by

(−ωij ) = −C(ωij )C−1+ B(ωαi)C
−1+ dC C−1

We can takeC = const.= id since we are not changing the subspaceE. In this case

ωi = ωi + Biλωλ (6.4)
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and

(−ωij ) = (−ωij )+ B(ωαi). (6.5)

From equation (6.5), Cartan observed:

Proposition 6.3. The conditionωij ∼E ωij is equivalent to

B(ωαi) ∼E 0 . (6.6)

Cartan showed that under the hypothesis of the derived system being zero (6.6) impliesB ≡ 0.

This follows from applying matrixB to the structure equations

dωα = −ωαiωα +mod I , α = m+ 1, · · · , n . (6.7)

Actually Cartan gave the expression (Cartan 1928, section §4) like

dωα = cijαωiωj +mod I (6.8)

from which (6.2) gives

Biλcjkλ = 0 , (6.9)

which is assumed to have only the trivial solution [“Nous allons, das ce qui suit, nous borner au

cas où les équations homogènes
∑

λ cjkλuλ = 0 auxn − m inconnuesum+1, · · · , un n’admettent

que la solutionuα = 0. Cela revient à dire que le systèmedérivése reduit à zéro” (Cartan 1928,

section §5)].

6.3. Equivalence Problem for Non-Holonomic Geometry

The method of equivalence is advertised by Cartan in the 1928 address [“La recherche des invariants

d’un systeme de d’éxpressions de Pfaff vis-à-vis d’un certain groupe de substituitions linéaires

effectuées sur ces expressions” (Cartan 1928, section 4)], but interestingly, he did not apply the

method to its full power. We now outline the equivalence problem.

Recall that for general distributions (6.2) leads to the condition

Biλωλ ∈ I(1) .

The derivation was done in the particular case whereC = id. But this is not a restriction.

Replacingei = (ei)C by theei does not change the non-holonomic geometry and leads to the

transition matrix

g =
(
I C−1B

0 A

)
, C ∈ O(m),A ∈ GL(n−m) . (6.10)
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Then(ωi) = (ωi)+ C−1B(ωα) and (6.2) becomes

C−1B(ωα) ∈ I(1)

andC−1 can be removed becauseI(1) is a module over the functions onQ.

In spite of Cartan’s caveat [“Si le système dérivé n’est pas identiquement nul, le problème de la

représentation géométrique du système matériel devient plus compliqué. On est obligé de distinguer

différent cas, dans chacun desquels, par des conventions plus ou moins artificielles, on peut arriver

à trouver un schéma géométrique approprié. Nous n’entreprendrons pas cette étude génerale, dont

l’interét géométrique sévanouirait rapidement à mesure que les cas envisagés deviendraient plus

compliqués” (Cartan 1928, §11)], we hope to raise interest in further research on the equivalence

problem for non-holonomic geometry:

Given coframes($)V = ($i,$α)
t
V and (ω)U = (ωj , ωβ)

t
U on open setsU and V, find

invariants characterizing the existence of a diffeomorphismF : U → V satisfyingF ∗$V = g ·ωU ,

where the substitutions are of the form

g =
(
C B

0 A

)
, C ∈ O(m) , A ∈ GL(n−m) (6.11)

with

B(ωα) ∈ I(1) = D(I) , I = [ωβ] . (6.12)

We recall thatI ⊂ D1(T ∗Q) is the annihilator ofE. The greek indices can be further decomposed

into two parts:

capital greek lettersE = 1, · · · , r representing formsωE ∈ I(1);

lower case greek lettersα = m+ r + 1, · · · , n , wherer = dim I(1) , 0 ≤ r ≤ n−m .

Matrix B can be writtenB = (B1, B2) where the first ism× r and the second ism× (n−m− r).
Condition (6.2) is equivalent toB2 ≡ 0 and our choice of basis implies that

dωE involve only theωE’s and theωα ’s; dωα involve at least one of theωi .

The group of substitutions consist of matrices of the form

g =



C B1 0

0 Ao 0

0 A1 A2


 , C ∈ O(m) , Ao ∈ GL(r) , A2 ∈ GL(n−m− r) . (6.13)

In terms of frames we have

(ei) = (ei)C

(eD) = (ei)B1+ (eE)Ao + (eα)A1

(eα) = (eβ)A2

(6.14)
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which in particular shows:

Theorem 6.4. With the above notations, we have:

i) (ei, eα) generate an intrinsic subspace[I(1)]⊥, annihilated byI(1).

ii) Theeα generate an intrinsic orthogonal complementF ofE in [I(1)]⊥.

iii) There is complete freedom to choose theeD to complete the full frame forTqQ .

7. NON-HOLONOMIC TORSIONS AND CURVATURES

In this section we come back to the strongly non-holonomic case. SinceB = 0 (and as we can take

C = id) we have

ωi = ωi (ie., ∼TQ) for i = 1, ..., m. (7.1)

We look at the original structure equations for theωi :

dωi = (dωi) = −ωijωj − ωiαωα (7.2)

whereωij = −ωji and we expandωiα as a certain combination of the coframe basisωj , ωβ (at this

point there is still freedom to choose the matrixA defining theωβ). The result is of the form

dωi = −ωijωj + γkλiωkωλ + sλµiωλωµ.

We now use to our advantage the conditionωij ∼E ωij of Proposition 4.1. We can modify

ωij → ωij = ωij − pijλωλ (7.3)

with pijλ = −pjiλ so

γkλi → γ kλi = γkλi + pikλ

γiλk → γ iλk = γiλk + pkiλ = γiλk − pikλ.

There is a unique choice ofp′s making theγ ’s symmetrical, namely

pikλ = γiλk − γkλi

2
. (7.4)

Summarizing, we have the Cartan structure equations for strongly non-holonomic connections:

Theorem 7.1. (Cartan 1928, §6).Consider the non-holonomic connectionD with connection

forms (1.4) modified as in (7.3). ThenD andD have the same geodesics and

dωi = −ωijωj + γ kλiωkωλ + sλµiωλωµ (7.5)

dωα = cijαωi ∧ ωj +mod I. (7.6)
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The formsωij = −ωji are uniquely defined by the symmetry requirement

γ iλk = γ kλi . (7.7)

Cartan did not invest on computing curvatures [“En même temps qu’une torsion, le développe-

ment comporte une courbure, dont il est inutile d’e’crire l’expression analytique” (Cartan 1928, §8).

We take Cartan’s words as dogma, perhaps to be subverted in future work]. The curvature forms

for the connectionωij would be helpful to compute characteristic classes of the bundleE→ Q.

7.1. A Canonical Choice of Metric in F = E⊥

Assuming the strongly non-holonomic hypothesis, (6.9) yields for each pair of indicesj "= k,

cjkαuα = 0⇒ uα = 0 . (7.8)

Interpreted as a linear system for theuα, this in particular implies

1

2
m(m− 1) ≥ n−m or m(m+ 1) ≥ 2n .

We now work on the change of coframes

ωα = Aαλωλ, α = m+ 1, ..., n. (7.9)

The differentials of the latter are given by:

dωα = Aαλdωλ +mod I
dωα = Aαλ(−ωλiωi − ωλβωβ)+mod I

Now,

ωλi = cijλωj +mod I (7.10)

so that

dωα = cijαωi ∧ ωj +mod I (7.11)

with

cijα = Aαλcijλ . (7.12)

We can choose matrixA uniquely by a Gram-Schmidt procedure on then−m linearly inde-

pendent vectors(cijλ) λ = m+ 1, · · · , n in R
(m(m−1)/2).

Thus we obtain the conditions on thebivectors(Cartan’s terminology):∑
i,j

cijαcijβ = δαβ . (7.13)

From this point on, in order to maintain the ortonormality conditions, the change of coframes

must be restricted toA ∈ O(n−m). Hence we get

Theorem 7.2. (Cartan 1928, §9). Assume the strongly non-holonomic case. The conditions

(7.13) define uniquely a metricg onTQ = E ⊕ F .
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7.2. Geometric Interpretation of Torsion

Recall theRm = Eqo valued 1-formθ given by (3.6)

θ = “dγ " = ωj uj

which is the integrand of (3.5). The quotes indicate that this is a loose notation, “dγ " is not exact.

Indeed, we compute

dθ = dωk uk + duj ∧ ωj .

Now, duj = −ωkj uk by construction, so by Proposition 7.1

dθ =
∑
k

(dωk +
∑
j

ωkj ∧ ωj) uk = tkuk . (7.14)

In the strongly non-holonomic case, Theorem 7.1 gives

dθ = (γjλkωjωλ + sλµkωλωµ
)
uk . (7.15)

Proposition 7.3. (Cartan 1928, §8).Consider an infinitesimal parallelogram inQ spanned by

vectorsu, v in TqQ, and the associated infinitesimal variationdω(u, v) in R
m. If u, v belong toEq

there is no variation inRm after the cycle. Foru ∈ Eq andv ∈ E⊥q = Fq the variation is given by

the torsion coefficientsγkλi ’s. For u, v ∈ Fq the variation is determined by the coefficientssλµi ’s.

The symmetry (7.7) has the following interpretation:

dω(u, n) · v = dω(v, n) · u (7.16)

with u, v ∈ Eq , n ∈ Fq.
One can consider the non-holonomic connection onF associated to the metricg. Moreover,

one can repeat the procedure in Theorem 7.1. Write

dωα = ωλαωλ + δkλαωkωλ + cijαωiωj (7.17)

where the ambiguity on theδ’s can be removed by changing to anotherωλα = ωλα +mod[ωi] and

imposing the symmetryδkλα = δkαλ and the antisymmetryωλα = −ωαλ.
Mutatis mutandis, the geometric interpretation of the torsion coefficientsδkαλ’s andcijα ’s is

analogous. In particular, there is no torsion for pairsu, v ∈ F .

It seems that these geometric interpretations were forgotten by the geometers from the 60’s

on. For instance, in the very influential lectures (Hicks 1965, p. 59), it is written: “as far as we

know, there is no nice motivation for the word torsion”.
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7.3. The Case where F is Integrable

When the torsion coefficients in (7.5) all vanish,dωj = ωijωi, then all the formsdωj belong to

the ideal

J = [ω1, ..., ωm] (7.18)

so by Frobenius theorem, the distributionF = J ⊥ is integrable.

One can construct a local fibrationU → B, whose fibers are (pieces of)F leaves. Choose

coordinates(q1, · · · , qm, qm+1, qn) on U , such that(q1, · · · , qm) are coordinates onB and the

fibration is(q1, · · · , qm, qm+1, qn)→ (q1, · · · , qm). The distributionE will be given by

dqα = bαidqi. (7.19)

If the functionsbαi do not depend on the lastm−n coordinates, we have locally anR
m−n action

on U → B and a connection on this (local) principal bundle. More generally, one can formulate

the following equivalence problems:

1. Given(ω1, · · · , ωn) a coframe onU , find a Lie groupG of dimensionn−m, a diffeomorphism

F : U → P = B × G and a connection on the principal bundleP such that the distribution

E : ωα = 0 onU corresponds to the horizontal spaces of the connection on P.

2. Add to the previous a Riemannian metricg onU and assume that it isG-equivariant.

3. Same, requiring that the vertical and horizontal spaces areg-orthogonal. In other words, the

vertical spacesb × G correspond to the leaves ofF .

Case 2) was considered in (Koiller 1992). The non-holonomic connection onE projects to

a connection onB. Alternatively, it is also possible to use the Levi-Civita riemannian connection

DB onB, relative to the projected metric. We get an equation of the formDB

ḃ
ḃ = K(b) · ḃ where

K is antisymmetric. The force in the right hand side is gyroscopic (does not produce work).

This forceK vanishes in case 3). This seems to be what Cartan had in mind in the abelian case

[“Si alors dans l’expression de la force vive du système on tient compte des équations des liaisons,

on obtient une forme quadratique enq ′1, · · · , q ′m, avec des coefficients fonctions deq1, · · · , qm. On

peut appliquer les équations de Lagrange ordinnaires.” (Cartan 1928, §10)]. We observe that in the

example of Caplygin’s sphere, we have the principal bundle with connectionR
2×SO(3)→ SO(3),

and the vertical and horizontal spaces arenot orthogonal. A “non-holonomic force” is present in

the reduced system even in Cartan’s homogeneous case.

8. RESTRICTED CONNECTIONS

In this section we adopt an “internal” point of view, as opposed to the “extrinsic” approach of the

preceding ones. It is quite fragmentary and tentative, aiming to propose directions for future work.

We change the notation for the configuration space, which will be denotedM.
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Consider a subbundleE→ M of TM, and a vector bundleH → M.

Definition 8.1. An E-connectionD onH is an operatorDXs for X section ofE ands section

of H , satisfying:

• D is R-linear inX ands andC∞(M)-linear inX.

• D is Leibnitzian ins:

DXf s = X(f )s + fDXs .

To emphasize the fact thatX ∈ E, we also call this object an E-restricted connection. When

H = E an E-restricted connection onE will be called a non-holonomic connection onE.

A comment is in order. This definition seems natural here but we have searched the literature

and have not found it. In fact, given a vector bundleH → M, the usual notion of a connectionD

onH (see e.g., Milnor and Stasheff 1974, appendix C) means aTM-connection onH , in the sense

of our Definition 8.1. We will call thosefull connections. That is,X is allowed to be any section

of TM, so one is able to covariantly differentiate allong any curvec(t) in M. The difference in

Def 8.1 is that the covariant differention is defined just for curves withċ ∈ E. Therefore, to avoid

confusion, we called the connection in Definition 8.1 arestrictedconnection.

Given a full connection, evidently, it can the restricted toE or F . Given a (restricted) E-

connection onH , can it always be extended to a (full) TM-connection? The answer is yes. Consider

the following “cut-and-paste” or “genetic engineering” operations:

Let

TM = E ⊕ F (8.1)

be a Whitney sum decomposition with projection operators denoted byP (overE parallel toF )

andQ (overF parallel toE).

i) Given a (full) connectionDXY onTM, it induces full connectionsD1 onE andD2 onF , by

restrictingY to one of the factors (say,E) and projecting the covariant derivativeDXY over

this factor. Since full connections are plentiful, so are restricted ones.

ii) Given D1,D2 E-restricted (F-restricted, respectively) connections onH , it is obvious that

DXs = D1
X1
s +D2

X2
s defines a full connection onH .

Proposition 8.2. Given a non-holonomic connectionD(E,E) on E, andD(F,E) an F-connection

on E, the rule

DXY = D
(E,E)
PX Y +D

(F,E)
QX Y , Y ∈ "(E) (8.2)

defines aTM connection on E extending D. HereP andQ are respectively the projections on E

(resp. F) along F (resp. E).
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Remark 8.3. However, given an E-restricted connectionD1 in E and an F-restricted connection

D2 in F , the rule

DXY = D1
X1
Y1+D2

X2
Y2

fails to define a connection inTM, because

X1(f )Y1+X2(f )Y2 "= X(f )Y.

The equivalence problem can be rephrased as follows:characterize the class of full connections

D onM such that their non-holonomic restrictionsDE = D(E,E) have the same geodesics.

8.1. Parallel Transport and Geodesics

The basic facts about TM-connections (see Hicks 1965), chapter 5) hold also for E-restricted

connections. For instance,

• (DXY )m depends only on the values ofY ∈ H along any curvec(t) ∈ M with ċ(0) = Xm.

• Parallel transport of a vectorho ∈ Hm along a curvec(t) ∈ M with ċ ∈ E.

We slightly change the usual proofs (Hicks 1965). Take a local basis{hj }, j = 1, · · · , p
trivializing H over a neighborhoodU ⊂ M and vectorfieldse1, · · · , eq onU ⊂ M generatingE.

Hereq is the dimension of the fiber ofE andp the dimension of the fiber ofH . We definep2q

functions"ijk (1≤ i, j ≤ p, 1≤ k ≤ q) on U by

Dekhj =
∑
i

"ijkhi . (8.3)

Write

ċ(t) =
∑
k

gk(t)ek .

We searchaj (t) such thath(t) =∑ aj (t)hj satisfies

Dċh(c(t)) ≡ 0.

We get a linear system of ODEs inp-dimensions

daj

dt
+
∑
i,k

aigk(t)"
j

ik(t) = 0 . (8.4)

where"jik(t) = "
j

ik (c(t)) .

Recall that anE-connection on itself (that is,H = E) is called a non-holonomic connection on

E. The equationDċċ = 0 gives a nonlinear system inn+ p dimensions (wheren is the dimension

of M andp = q is the dimension ofE) for x anda given by

dxr

dt
=

∑
k=1,...,p

ak e
k
r (x) (1≤ r ≤ n),

daj

dt
=−

∑
i,k=1,...,p

aiak"
j

ik(x) = 0 (1≤ j ≤ p) .

(8.5)
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Hereekr is ther − component (1 ≤ r ≤ n) of thek-th E-basis vector (1≤ k ≤ p) in terms of a

standard trivialization ofTM.

8.2. Torsion and Curvature

Let D,D two (full) TM-connections, andDE,D
E

their restrictions as E-connections along F.

Consider the difference tensor onTM

B(X, Y ) = DXY −DXY ,X, Y ∈ "(TM) .

ClearlyB is C∞(M)-linear in both slots. DecomposeB = S + A into symmetric and skew-

symmetric pieces:

S(X, Y ) = 1

2
[B(X, Y )+ B(Y,X)] , A(X, Y ) = 1

2
[B(X, Y )− B(Y,X)] (8.6)

Consider also the torsions

TD(X, Y ) = DXY −DYX − [X, Y ] , TD(X, Y ) = DXY −DYX − [X, Y ] . (8.7)

It is easy to verify

2A(X, Y ) = T (X, Y )− T (X, Y ) . (8.8)

These objects clearly make sense in the restricted version. Recall (Hicks 1965, 6.5) the notion

of torsion associated to a(1,1) tensor P (m ∈ M &→ Pm ∈ End(TmM)):

TP (X, Y ) = DXP(Y )−DYP (X)− P [X, Y ] . (8.9)

Here we take for operatorP the projection overE alongF . In the context of restricted

connectionsX, Y are vectorfields inE.

Definition 8.4. Let BE the restriction ofB to E, with values projected onE alongF , and

similarly defineSE,AE. Define the restricted torsion by

T E
D (X, Y ) = DE

XY −DE
Y X − P [X, Y ] , X, Y ∈ "(E) (8.10)

The latter is aEm valued tensor(vm,wm) ∈ Em × Em &→ T E
m (vm,wm)

Theorem 8.5. The following are equivalent:

a) DE andD
E

have the same E-geodesics.

b) BE(X,X) = 0 for all X ∈ "(E).
c) SE = 0.

d) BE = AE.
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Corollary 8.6. The restricted connectionsDE andD
E

are equal if and only if they have the

same geodesics and the same restricted torsion tensors.

Corollary 8.7. Given a restricted connectionD
E

, there is a unique restricted connectionDE

having the same geodesics asD
E

and zero restricted torsion.

Proof. The results on (Hicks 1965, section 5.4) followipsis literis in the restricted context. For

instance, we show the latter. The uniqueness results from the second proposition. To show the

existence, we define

DXY = D
E

XY −
1

2
T
E
(X, Y ) . (8.11)

DE is clearly anE-connection. We compute

BE(X, Y ) = 1

2
T (X, Y ) = AE , SE = 0,

since the torsion is skew symmetric. SinceSE = 0, they have the same geodesics. Finally, a simple

calculation gives

T E = T
E − 2AE = 0

soDE has zero torsion. �

In terms of the original full connection, there is still too much liberty. We can extendDE to

a full connection with arbitrary completionsDF,E,DTM,F . In the spirit of Cartan’s approach, one

would like to characterize special completions. We plan to pursue this futurely. For this purpose,

Vilms (1967) and Vagner (1965) can provide the starting point.
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RESUMO

Nesta nota revisitamos a comunicação de E. Cartan no Congresso Internacional da IMU em Bolonha, Itália.

As distribuições aqui consideradas serão do mesmo tipo que as tomadas por Cartan, uma classe especial

que chamamos fortemente não-holônomas. Porém, preparamos o caminho para a aplicação do método da

equivalência de Cartan (uma ferramenta poderosa para a obtenção de invariantes) a distribuições mais gerais.

Palavras-chave: mecânica não holonômica, método de equivalência de Cartan, conexões afins.

REFERENCES

Arnold V. 1978. Mathematical Methods in Classical Mechanics, Springer-Verlag.

Arnol’d V, Kozlov V and Neishtadt A. 1988. Dynamical Systems III, Springer-Verlag.

An. Acad. Bras. Cienc., (2001)73 (2)



190 JAIR KOILLER, PAULO R. RODRIGUES and PAULO PITANGA

Bates L and Cushman R. 1999. What is a completely integrable nonholonomic dynamical system? Rep

Math Phys, 44(1/2): 29-35.

Blajer W. 1995. An orthonormal tangent space method for constrained multibody systems, Comput

Methods Appl Mech Engrg, 121: 45-57.

Bryant RL, Chern SS, Gardner RB, Goldschmidt HL and Griffits PA. 1991. Exterior Differential

Systems, Springer-Verlag.

Cartan E. 1928. Sur la represéntation géométrique des systèmes matériels non holonomes, Proc Int Congr

Math, Bologna, 4: 253-261.

Cartan E. 1939.Selecta, Gauthier-Villars; 1910, Ann Sci École Norm Sup, 27: 109-192.

Choquet-Bruhat Y, Dewitt-Morette C and Dillard-Bleick M. 1997. Analysis, Manifolds and

Physics, North-Holland.
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