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ABSTRACT
In this note we revisit E. Cartan’s address at the 1928 International Congress of Mathematicians
at Bologna, Italy. The distributions considered here will be of the same class as those considered
by Cartan, a special type which we call strongly or maximally non-holonomic. We set up the
groundwork for using Cartan’s method of equivalence (a powerful tool for obtaining invariants
associated to geometrical objects), to more general non-holonomic distributions.
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INTRODUCTION

Le vrai probleme de la represéntation géomeétrique d’'un systéme matériel non holonome consiste
[- - -] dans la recherche d’'un schéma géométrique lié d’'une maniére invariante aux propriétés
mécaniques du systéme.
Elie Cartan

In this article we revisit E. Cartan’s address (Cartan 1928) at the 1928 International Congress
of Mathematicians at Bologna, Italy. The distributions considered by Cartan were of a special type
which we callstronglyor maximally non-holonomidOur aim is to set up the groundwork for using
Cartan’s method of equivalence (a powerful tool for obtaining invariants associated to geometrical
objects (Gardner 1989) to more general non-holonomic distributions.
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This is a local study, but we outline some global aspects. If the configuration spéca
manifold of dimensiom, its tangent bundl& Q should admit a smooth subbundieof dimension
m, m < n. As it is well known, this imposes topological constraints@nsee Koschorke 1981.
Although we will be discussing only local invariants, hopefully these will help constructing global
ones, such as special representations for the characteristic classes (Milnor and Stasheff 1974,
Postnikov et al. 1999).

NotaTioN. Throughout this paper we follow consistently the following convention: capital roman
letters/, J, K, etc. run from 1 to:. Lower case roman charactersg, k run from 1 tom (repre-
senting the constraint distribution). Greek charaateg y, etc., run fromm + 1 ton. Summation
over repeated indices is assumed unless otherwise stated.

1. NON-HOLONOMIC CONNECTIONS

We fix a Riemannian metrig on Q and letV the associated Riemannian connection, torsion free
and metric preserving:

V¥ —VyX =[X, Y], X(Y,Z) = (VxY, Z) + (Y, Vx Z). (1.1)

In section 8 we consider an arbitrary affine connection (see Hicks 196B). oRecall that
given a local frame:; on an open subsé¥ C Q and its dual coframe,, a connectiorv is
described by local 1-forms;; = —w,; such that

VX@J :a)”(X)e[ N (12)

The torsiontensori¥ (X,Y) = VyY — Vy X — [X, Y] = ;(X, Y) ¢; and expanding the left hand
side we get thetructure equations

doj+wig N 0wy =1ty . (13)

As the Riemannian connectionis torsion freef; = 0.
We assume heretofore that the framadsptedo the distributionE. This meange; (¢)} span
the subspacé&,, g € Q, and the remaininge, } span theg-orthogonal spacé, = EqL

DerINITION 1.1. The(Levi-Civita) non-holonomic connectiam E is defined by the rule
DXej :Cl),'j(X)ei, (l,] =1,...,m) . (14)

Here we allowX to be any vectorfield o, not necessarily tangent 6. Notice that for
vectorfieldsy, Z tangent toE, the metric-compatibility

X(Y, Z) = (DxY, Z) + (Y, Dx Z) (1.5)

still holds.
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The motivation for Definition 1.1 is D’Alembert’s principleConsider a mechanical system
with kinetic energ)%g(c'(t), ¢(t)) and applied forces, subject to constraints such that) € E. ).
The constraining forc&;¢(r) — f is g-perpendicular to the constraint subspagg;,, since it
does not produce work

Unless otherwise mentioned, we assume there are no applied forces. The geodesic equation
are given, in Cartan’s approach, by

dpi
X =pie;, DxX = [E —I—pja)ij(X)] e, =0. (1.6)

One may wish to see the equations explicitly. Choose a coordinate system¥y C Q.

Definem? functions (Christoffel symbolsl)‘j.k(x) onW by

Dye;=T'e; . (1.7)
Write

c(t) = pr(t)ex (1.8)

(some authors call thg, = w(¢(¢)) quasivelocitiek

ProrosiTioN 1.2. The geodesic conditiob.¢ = 0yields a nonlinear system irtt+ m dimensions
for x and p given by

dXR

P e (x),

dp;

=P (1.9)

Here ek is the R-th componentY < R < n) of thek-th E-basis vector{ < k < m) in terms of
the chosen trivialization of Q.
The Christoffel symbols can be rewritten in terms of siedatac]; defined by

C,]'(j = (lei,ej], e) . (1.10)
In fact, compatibility with the metric (see (1.1) implié’#}( = —Fi.k, and torsion free implies
cf; =Tk, — T}, Itfollows that
o=~ — 1.11
ik_é(cji_ckj_cik) (1.11)

Inserting into the geodesic equations, and taking into account the symmetric and anti-symmetric
terms, we see that (1.9) can be rewritten as

dpj

= ¢ Pibk - (1.12)

In this formula we already observe the interplay between the Lie bracket stucture and the metric.
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2. AN EXAMPLE

Cartan’s viewpoint bypasses the traditional methods in constrained dynamics where Lagrange
multiplier terms are added to represent the constraint forces (just to be eliminated afterwards);
see Blajer 1995 and references therein. Moreover, when using the Euler-Lagrange equations, the
system of ODEs comes in implicit form unsuitable for being easily integrated numerically. In
Cartan’s approach all this information is embodied in the Christoffel symbols or equivalently in
the structure coefficients. Cartan’s approach provides an algorithmic way to derive the equations
of motion for nonholonomic systems:

i) Compute the adapted orthonormal basisq, say, by the Gram-Schmidt procedure.
i) Compute the structure coefficiertt§ (x), taking Lie-brackets of the vectorfields.

Building up on the example in Cartan (1928, section 11) we start up the derivation of the
equations of motion for “Caplygin’s sphere”. Details of the derivation and a theoretical analysis
will be provided elsewhere.

Caplygin’s sphere is a dishonest billiard ball, namely, a non homogeneous sphere of radius
a and total mass = 1 (without loss of generality), with moments of inertig I, I3, rolling
without sliping on a horizontal plane. The configuration spad@®?is SO (3). It is assumed that
the center of mass coincides with the geometric center. Cartan considered only the homogeneous
(honest) case = I, = I, = Is.

We follow Arnol'd’s notation (Arnol’d 1978), where capital letters denote vectors as seen from
the body. We denote hythe angular velocity viewed in the space frame, rtle angular velocity
as viewed in the body frame, which we may assume attached at the principal axis of inertia. Thus
R Q2 = w,whereR € SO(3) is the attitude matrix. Intrinsically speaking, this correspondsfto
translation in the Lie grou§ O (3). Let Q, || Q ||= a, a material point in the sphere, viewed in the
body frame. Thus in space

q=RQO+ (x,y,a). (2.1)
Computing the total kinetic energy
1 .2
N LCILIRE
yields, in the same fashion as in the rigid body with a fixed point,
2T = (IQ, Q) + 2+ 12 (2.2)

whereé = x andn = y are the cartesian components of the velocity of the geometric center.
The non-slip condition at the contact point in vector form is given by

(£.7m) =aw xZ 2.3)
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that is,
E: &E€—aw,=0, n+aw1=0. (2.4)

Some comments are in order. Firstly, the componagrorresponds to pivoting around the contact
point, and therefore is arbitrary. In fact, this distributiBrof three dimensional subspaces £ 3)
in the five dimensional{ = 5) manifold R? x SO (3) is a realization of Cartan’s famous “2-3-5"
distribution (see “Les systémes de Pfaff & cing variables et les équations aux derivées partielles
du second ordre”, Cartan 1939). We observe that (2.4) could also be written in complex variables
notationé +in = —ai (w1 + iwy), which motivates studying nonholonomic systems in the context
of pseudo-holomorphic bundles.

It is very important in our context is to observe that the constraints define a distritiiiion
Q which is bothright SO (3)-invariant andR?-invariant. This brings us immediatelly to the issue
of integrability of nonholonomic systems, which was introduced in (Koiller 1992) and extensivelly
discussed in the colletanea by Cushman 'ﬁn'nhtycki 1998, also see Bates and Cushman, 1999.
There is a conflict between the I&fO (3) invariance of the Hamiltonian (2.2) and the righ® (3)
invariance of the constraints (2.4). Whies= I, = I, = I3, the Hamiltonian is also right-invariant,

2T = k* (23 + Q%+ Q%) + 62+ n° = k2 (0F + w3 + 0d) + &% + 1

and the problem is amenable to full right reduction and becomes easily integrable.
In fact, for the homogeneous case we useahsatz

wy/dt = AE + Bqg , wy/dt = An— Bp , w3/dt =«r (2.5)
wa/dt = D(E —aq) , ws/dt = D(n+ap) . (2.6)

The adapted basis is the dual basis ofihéincidentally, we provide a correction to the coefficients
given in Cartan, 1928).
We compute Z = Y>_, w?/d1:

2T = (A*+ DH(E? +n®) + (B2 + a®DA)(p? + ¢*) + k?r* + 2(AB — aD)(q — np)

The mixed term is zero provided

D = ABJa (2.7)
If we also set
k%= B?(1+ A? (2.8)
then
2T = m(E* + 1) + 2(p* + ¢ + %) (2.9)
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with
m = A*(1+ B?/a®) (2.10)

The free parameters here are A and B. Another choice could be using « as the free
parameters,

A=a/Vva?+«%2, D=«/Va?>+«?, B=« (2.11)
(lsz
dt=1Ir, 1 =«*+ —— 2.12
w3/ r K +a2+/c2 (2.12)
so that
2T = >+ )+ 1(p* +q°+ 1) (2.13)

We now outline the procedure for the general case (also integrable) using Cartan’s programme.
To organize the calculations, we write the left invariant forms in(3) as

0 —Q3 +Q
R YdR = 0 — |adr. (2.14)
0

and we denot€ (R) = (P, Q, R). The last entry follows the alphabet, and the reader will forgive
us for mixing up the notation in the left hand side.
Likewise, the right-invariant forms are

0 —w3 +wy
dRR™1= 0 —w |ar. (2.15)
0

and we denote(R) = (p,q,r). The relationRQ = w corresponds formally to the adjoint
representation. Now, if one desires explicit formulas using, say, Euler angles, it is sufficient to
parametrizeR = R(9, ¢, ¥) and compute the left hand side of (2.14) and (2.15) in terms of the
de,de, d.

It is worthy, however, to proceed as intrinsically as possible. f.etfs, f3 the right-invariant
vectorfields inSO(3) forming the dual basis for the,, w,, ws. The constraint distributio is
annihilated by the 1-forms

dx —awydt , dy + awy dt

and by inspection, we observe that the vectors

1 1
fa, fi— P a/dy , fa+ ;3/3x (2.16)
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generatel. We complete to a basis @fQ with the vectorfield$/dx , 9/0y .

Applying a Gram-Schmidt procedure on these vectors we get the hasis, providing the
starting point for Cartan’s method. However, this preliminary step brings a certain amount of pain:
since the inner produét, ) associated t@ is left, but not right invariant, the orthonormal basis is
neither left nor right invariant. Surprisingly, the system is still integrable. See Arnol'd et al. 1988.

To orthonormalize, we need the dual basis offthe,, Q3, that is, the left invariant vector-
fields Fy, F», F3 such that

(F1, F2, F3) R = (f1, fa, f3) - (2.17)
Thus in particularf; = Rz F1 + Rz F> + R33 F3 so that
1
| f 7= 5 (1R3, + 2R3, + [3R%y) (2.18)
We define thene; = f3/ || f3 . In a similar fashion we compute = ¢,/ || e, ||, where
- 1 1
Gr= fu— Sajdy —(fs. fr— ajay) 1. (2.19)
a a I f3ll

To compute the inner product we revert to the basis of left-invariant vectorfields via (2.17) and we
obtain
I1R31R11 + IbR3>R12 + I3R33R 10
R PR T R At (L) Bt (W) F— - (2.20)
11R31 + 12R32 + 13R33 a dy

It is clear that the calculations get increasingly involved but are within our powers.

€2 = (R11— R31

3. GEOMETRIC INTERPRETATION

Direct and inverse “development” of frames and curves were so obvious to Cartan (and for that
matter, also to Levi-Civita) that he (they) did not bother to give details. Actually, inverse parallel
transport seems closest to their way of thinking. We elaborate these concepts, exhibiting explicitly
(Theorem 3.4 below) a system of ODEs producing at the same time, the solution of the non-
holonomic system, a parallel frame along it, arftbalograph representation of the solution curves

on the Euclidean spadi™.

3.1. DIRECT PARALLEL TRANSPORT OF A E, -FRAME.

AframeforE, C T, Q can be transported along acurve) in Q. The “novelty” here (as stressed
by Cartan):c(¢) is an arbitrary curve i@, that is¢(¢) does not need to be tangentfo

Recall that given a tangent vecter = vie; € Ey, and a curve:(r) € Q, ¢(0) = g,, there
is a unique vectorfiel& (r) € E.,, V(0) = V?suchthatD.V(t) = 0. In fact, we are led to the
linear time-dependent system of ODEs

U1 v1

= (@i (&) | : (3.1)
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(usingDee; = —wjr(¢)er and (1.6)). In particular, an orthonormal framef&y} is transported to
E. and remains orthonormal.

3.2. HODOGRAPH OF A E(;)-FRAME TO R™.

Given a curve of frames fof Q alongc(t), {e;(t)}, consider the frame foE,, formed by the
first m vectorse;. We have

Veei = —w;j(C) ej — wi(C) ey

We develop a “mirror” orhodograph frame {U() : u1(¢),---,u,(@®)} confined to
R™ = E,, , g, = c(0), solving the system fol/ (1) € O(m) given by

uj = —wi(c)ug, u;i(0) =ei(q,) - (3.2)
Equivalently (by elementary matrix algebra)
UU = (w;j¢@t), U0 =1d (3.3)

whereu; are the columns of/.

Lemma 3.1. Let{U(0) : u;(0) = ¢;(0)} a frame forE,,. The hodograph of its direct paralel
transport {e1(¢),--- , e, (¢)} alongc(z) is the constant framé/(r) = U(0) = Id.

Proor. This is becaus®;e; () = 0 iff w;;(c(¢)) = 0. O
ProposiTiON 3.2. LetU(r) a curve of frames ilR™. Define a frame{e1(¢), - - - , €,(t)} for E.q
by
(1, ,em)=(e1, -~ ,en)U (3.4)
where{ey, - - - , e,,} is parallel alongc(z). Then
) é1,---,é, satisfiesD:é; = —w;;é; with (w;;) = UU.

i) The hodograph ody, --- , ¢, toR™ isU(z).

ProoF. It sufficies to prove i) and it is simple:

Di(e1,-- . ém) = (e1,---,em) U+ (Dse1,---, Deey) U
= (er,-seU=(er, e ) UUTU = (1, , én)(wij)
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3.3. HoDOGRAPH TO R™ OF A CURVE c¢(t) IN Q.

Considerc(t), a curve inQ, ¢(0) = ¢,. As before, it is not assumed that) is tangent taE ).
Let{e; : e1(?), - - - , e,(2)} @alocal orthonormal frame fdf, Q alonge(r) with {eq, - - - , e,,} tangent
to E,. Denotew;, I =1, --- , n the dual basis. Construct first the hodogrdyi(z), - - - , u,, (1)}
of {eq, -- -, e} toR™, and then define

t
y(@) = fG 2/ [w1(D)ua(?) + - - + W (Dun ()] ds . (3.9)
é 0
wheref is an 1-form with values ifR™ given by
0= w;U; (36)

and for short we wrote; (1) = w; (¢(¢)).
The curvey (¢) in R" = E, , is called thenodographof c(z) to R™. If ei(¢), - , e,(t) are
parallel along, theny (¢) is given by

y(t):(/ wldt,---,/ a)mdt)
0 0

taking the coordinate axis & alongu1(0) = u1(¢), - - - , u,,(0) = u,, ().

3.4. DEVELOPMENT ON Q OF A CURVE ¥ (t) € R" = E,
On the other direction,

ProrosiTION 3.3. Given a curvey(r) in R™ = E, , we can construct a unique curvé) in Q
tangent toE whose hodograph ig(z). The curver(¢) is called the development ofr).

Proor.  First, extend arE, -adapted basis fof, Q in a neighborhood; € W C Q, with

corresponding formse,,;, I, J =1, ---, n. Then consider the vectorfield W x O (m) given by
X=Y (U'y®), e, U=U;X), c0=g,, UQ) =id . (3.7)
i=1

Integrating this vectorfield we obtain a curigr), U(z)).
We claim that the hodograph oft) is y (r) = y (¢) (the vectorfield was constructed precisely
for that purpose). Indeed, by the previous item,

t
Y () =/ [y Olur 4+ + [U YOl un(0)]dr . (3.8)
0
so that
y =Wy u
which is equal toy by elementary linear algebra: ifis any vector and/ any invertible matrix,

v = (U tv);u;, whereu; are the columns ot/ (U is the matrix changing coordinates from the
basisu; to the canonical basis). d
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What if we had used a different frarag on U? We would get a system of ODEs

m

Y=Y (T'y®), e . T=T@;QY), c0)=gq, T(0) =id (3.9)
i=1

and we claim that = X so the curve:(¢), is unique.
To prove this fact it equivalent to show that= U P where P changes basis fro@, i =
1,--- ., mtoe,i=1---,m,thatis

(Elv"' azm)=(elv"' aem)P . (310)
We compute

(UP)" YW UP+UP)
= PP+ PYU)P =P P+ P Yw;,)P

T-T

which is indeed the gauge-theoretical rule giving the fotms) of the basis; defining7 from
the forms(w;;) of the basig;.

We can upgrade this construction to provide a parallel frame al@ngby declaringo;; = 0.
This gives

P+ (w;(X)P=0. (3.11)
which could be added to system (3.7). Actually, we can take the equatiéhdat of that system,
observing that/ = P~ (Proor: LU1 = —U-0U = —(w;)U?).

THeoreM 3.4. Given a curvey (¢) € R™, consider the nonautonomous system ODEs in the frame
manifold Fr(E) given by

X=) (Py@®) e, P=(-wy(X)P, c(®=¢q, PO =id . (3.12)

i=1

It gives the developed curvér) on Q and an attached parallel frame
(El"" ,Em)=(€l,"' aem)P . (313)

For a line y(¢) = t v passing through the origin ifR” we obtain the non-holonomic geodesic
starting atg with velocity¢(0) = v.

3.5. HODOGRAPH OF THE D’ ALEMBERT-LAGRANGE EQUATION

We elaborate on the comments of §7 in Cartan 1928 [“La trajectoire du systéme matériel, supposé
soumis a des forces données de travail elémenpaie,w;, se développe suivant la trajectoire

d’un point matériel de masse 1 placé dans I'espace euclidieditnensions et soumis a la force

de composanteg;.”]. Consider a mechanical system with kinetic enefgand external forces

An. Acad. Bras. Cieng(2001)73 (2)



NON-HOLONOMIC CONNECTIONS 175

F (written in contravariant form, we lower indices using the metric so that T Q), subject to
constraints defined by the distributidgh The non-holonomic dynamics is given by

Dié = F! (3.14)

where the right hand side is the ortogonal projectio aiver E.
Let y be the hodograph af Fix aconstantframef,,---, f,, onR” and write

y =Y vnf; .

Lete; be the parallel frame along#) obtained in Theorem 3.4. Decompose

Fl' = fe . (3.15)

CoroLLARY 3.5. (Cartan 1928, §87).Equation (3.14) is equivalent to

Vi) = file(®) . (3.16)

Equations (3.16) should be solved simultaneously with (3.12) and (3.13).

This approach can be helpful for setting up numerical methods, and in some cases reducing
the non-holonomic system to a second order equatidk’onVe also observe thdt can represent
non-holonomic control forceactuating over the system, as those studied in Krishnaprasad et al.
1996.

4. EQUIVALENT CONNECTIONS

In this section and the next we discuss the question of whether two non-holonomic connBctions
andD on E have the same geodesics.
GivenA € GL(n —m),C € O(m), B € M(m,n —m), we take

Wy = Agpwy. , @ = Cywy + Bijw, (4.1)
This is the most general change of coframes preserving the sub-Riemannian metric
8sub = a)f 4+ 4+ w,i (4.2)
supported orE. The corresponding dual franag satisfies
ej =¢Cij, eqg =€ Big + €, Asq (4.3)

(here, for ease of notation we place scalars after vectors).
In matrix form, we have

52(((;2;)@@:(2;) (4.4)
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C B
(elv"'7en):(glv"'vgn)(O A) . (45)

Using matrix notation is not only convenient for the calculations, but also to set up the equiv-
alence problem (Gardner 1989). Consider the linear g@ub matrices of the form

g:(éj i) , CeOm),Aec GL(n—m),B e M(m,n—m). (4.6)

The equivalence problem for sub-Riemannian geometry can be described as follows: Given
coframesy = (Q},,---, Q)" andwy = (@}, -+ , »},)" on open setd andV, find invariants
characterizing the existence of a diffeomorphigm &/ — V satisfying F*Qy = g - wy. For
sub-Riemannian geometry, see Montgomery 2001.

In non-holonomic geometry we are lead to a more difficult equivalence problem (see section
6.3 below). In Cartan’s 1928 paper, the non-holonomic connections are characterized only for
a certain type of distributions, which we will cadtrongly non-holonomicInterestingly, Cartan
did not work out the associated invariants, even in this case. He focused in finding a special
representative in the equivalence class of connections with the same geodesics.

Consider the modified metric of)

g=0r 4+, (4.7)
and the associated Levi-Civita connectibn The geodesic equation is
— - de — —
T=Sj€j , DT = ?—l—ska)jk(T) €j=o. (4.8)

To compare (4.8) and (1.6), there is no loss in generality by takiagid. By inspection one
gets:

ProposITION 4.1. (Cartan 1928, 85.Fix C = id. The geodesics dd and D are the same iff
w;j(T) = w;j(T) (4.9)
for all T tangent toE.

5. PFAFFIAN SYSTEMS AND LIE ALGEBRAS OF VECTORFIELDS
5.1. EQUIVALENT 1-FORMS

In view of (4.9) it seems useful to introduce the following

DEerFINITION 5.1. Two 1-formsw; andw, are E-equivalent ifw; — w, anihilatest. We write
w1 ~g wp OF SIMplyw; ~ ws.
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In the C*°(Q)-ring of differential formsA*(Q), consider the ideal generated by the 1-forms
wy, oo =m+1, - n.We can write

E=1" (5.1)

where the superscript means “objects annihilated by”.

Clearlyw, ~g wy is equivalent tav; — wp = > f, w, € Z. More generally, two k-forma;
andw; are said to b& -equivalent if their difference vanishes when one of the glats - - , vy) is
taken onE. Again, this means that; — w, € Z. (In fact, given a Pfaffian system of 1-forms ¢n

91:07""9}’=05

one can form the ided on A*(Q) generated by these forms. Every form that is annulled by the
solutions of the system belongsiosee Choquet-Bruhat et al. 1997, p.232).

If w1 ~g w, it does not necessarily follow thdw, ~¢ dw,. For the later to happen, the
former must be equivalent over a larger subspéf®;- > E which we now describe.

5.2. FILTRATIONS IN T'Q AND IN T*Q

For background and a comprehensive review of the theory, see, e.g., Vershik and Gershkovich 1994
LetZ a Pfaffian system.

DEeFINITION 5.2. The derived system®(Z) is

r

IV =DXD)=10=) ai; |do el (5.2)
i=1

One constructs (see Bryant et al. 1991) the decredsiragion
i CIP TV 7O 7

defined inductively by b = (7(®))1,

HereZ is thought as a submodule ov€f°(Q) consisting of all 1-forms generated by the
6;. We assume all have constant rank. The filtration eventually stabilizes after a finite number
of inclusions, and we denote this spat8. By Frobenius theorem, the Pfaffian systéfi? is
integrable. Fix a leaf and consider the pull back of the filtration. That is, we pull back all forms
by the inclusionj : § — Q. The filtration associated tf*Z stabilizes at zero.

There is a dual viewpoint, more commonly used in non-holonomic control theory (Li Z and
Canny 1993): given a distributiofi in T Q one considers an increasing filtration

E,=ECE{CEyC---

Two (different) options are used by workers in this area:
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1) E =Ei_1+I[Ei_1,Ei_1] .
2) E=Eia+I[E,Eal=Ei-1+) ;- 4E; El .

We follow the first option, which is recursive, and yields faster growth vectors. Moreover, the
following fundamental duality result is easy to prove:
Lemma 5.3. I = Ef (equivalentlyE; = (Z®)1).

Proor. LetX,Y,Z € E. Observe that € Z; iff (check why)
O(X +1Y,Z]) =0.
Well, 6(X) = 0 by default and (the correct signs do not matter)
O[Y, Z] = £dO(Y, Z) + ZO(Y) £ YO(Z) =0

asf(Y) = 0(Z) = 0 becaus® € 7 anddo(Y, Z) = 0 becausé@ < 7. O

6. MAIN RESULT
6.1. STRONGLY NoN-HoLoNOMIC DISTRIBUTIONS

The main question to be addressed in the local theory is the following. Assume that the geodesics
of two Levi-Civita non-holonomic connectior3 and D are the same. Proposition 4.1 says that a
necessary and sufficient condition for this to happen; js~x w;;.

What are the implications of this condition in terms of the original coframes(wy, - - - , w,)
andw = (w1, - - - , w,)? The answer is that it depends on the type of distribufion

One extreme: supposE is integrable, that i€V = 7. There is a foliation ofQ by m-
dimensional manifolds whose tangent spaces are the subspac&hen it is clear that there are
no further conditions. We can change the compleniért E- without any restriction, and the
metric there. In fact, we can fix a leSfand the Levi-Civita connection asiwill coincide with the
projected connection, no matter wiis outsideE.

The other extreme is the case studied in Cartan 1928:

DEerINITION 6.1. We say that the distributiof’ is of the strongly or maximally non-holonomic
typeif the derived Pfaffian system associatedttds zero.

In the modern terminology one says that the nonholonomicity degree is 2. We now prove

THEOREM 6.2. (Cartan 1928, 85.)n the strongly nonholomic case, the metfgcandg must have
the same complementary subspaces. In other waBds: 0. Thus

F=E*'

is intrinsecally defined.
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Proor. Cartan used an argument that we found not so easy to decipher (see (6.6) on section 6.2
below). Thus we prefer to use a different argument to showBhat0. We start with the structure
equation
dw;, = —E,-j /\EJ- — Wiy N\ Wy
Sincew;; ~¢ w;j andw; ~¢ w; (see Equation (4.1) with’ = I) this implies
d@,- ~E da),» (61)
Now Equation (6.4) yields
d@,- = da),- + dBi,\a)A + B,-;Ld,a)k

and this inocently looking expression, together with (6.1) yields
Bidw;, ~g 0 orequivalently B;;dw; € T. (6.2)

Hence if the distribution is of strongly non-holonomic type tie= 0. a

6.2. DIGRESSION

The following calculations are actually never explicitly written in Cartan 1928, it seems that Cartan
does something equivalent to them mentally. A caveat: the connectiondgrnase antisymmetric
in the indicedl, J but in general this will not be the case for the formg below. If desired, they
will have to be antisymmetrized (a posteriori).
We begin by differentiating

_ C B dC dB
do = do + w
0 A 0 dA
. C B ( )+ dC dB c1 —c1BAa 1)\ _
w = —Q w
0 A 1 0 dA 0 Al

C B ct! —clBa?
(—o1,) =< 0 A ) (—wry) ( A-1 ) +

0
(6.3)
N dC dB ct —c1pat
0 dA 0o Al
(to be antisymmetrized)
The block(—w;;) is given by
(—@ij) = —C(w;;)C "t + B(we)Ct+dC C™t
We can takeC = const.= id since we are not changing the subspéacdn this case

w; = w; + Bjwy (6.4)
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and
(—wjj) = (—w;ij) + B(wyi)- (6.5)
From equation (6.5), Cartan observed:

ProrposiTION 6.3. The conditiorw;; ~¢ w;; is equivalent to

B(wai) ~E 0. (6.6)

Cartan showed that under the hypothesis of the derived system being zero (6.6) Bngli@s
This follows from applying matrix3 to the structure equations

dwy, = —wgiwe +modZ, a=m+1,---,n . (6.7)
Actually Cartan gave the expression (Cartan 1928, section §4) like
dwy = cjjqwiw; + mod T (6.8)
from which (6.2) gives
Biscji. =0, (6.9)

which is assumed to have only the trivial solution [“Nous allons, das ce qui suit, nous borner au
cas ou les équations homogeénes ¢ u, = 0 auxn — m inconnuest,, 11, - - - , u, N'admettent

que la solutiork, = 0. Cela revient a dire que le systemhérivése reduit a zéro” (Cartan 1928,
section 8§5)].

6.3. EQUIVALENCE PROBLEM FOR NoN-HoLoNOMIC GEOMETRY

The method of equivalence is advertised by Cartanin the 1928 address [“‘La recherche des invariants
d’'un systeme de d’'éxpressions de Pfaff vis-a-vis d’un certain groupe de substituitions linéaires
effectuées sur ces expressions” (Cartan 1928, section 4)], but interestingly, he did not apply the
method to its full power. We now outline the equivalence problem.

Recall that for general distributions (6.2) leads to the condition

B, w; € I(l) .

The derivation was done in the particular case wh@re- id. But this is not a restriction.
Replacinge; = (e;)C by thee; does not change the non-holonomic geometry and leads to the
transition matrix

-1
gz((l) j B) , CeOm),Ae GL(n —m). (6.10)
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Then(®;) = (w;) + C"1B(w,) and (6.2) becomes
C1B(wy,) € TV

andC ! can be removed becaug& is a module over the functions a.

In spite of Cartan’s caveat [“Si le systéme dérivé n’est pas identiguement nul, le probléme de la
représentation géométrique du systéme matériel devient plus compliqué. On est obligé de distingue
différent cas, dans chacun desquels, par des conventions plus ou moins artificielles, on peut arrivel
a trouver un schéma géométrique approprié. Nous n’entreprendrons pas cette étude génerale, doi
l'interét géométrique sévanouirait rapidement a mesure que les cas envisagés deviendraient plu
compligués” (Cartan 1928, §11)], we hope to raise interest in further research on the equivalence
problem for non-holonomic geometry:

Given coframegQ)y = (2;, Q,)}, and (w)y = (w;, wp);, ON open setd/ and V, find
invariants characterizing the existence of a diffeomorphisnd/ — V satisfyingF*Qy = g - wy,
where the substitutions are of the form

g:(c B) , CeO@m), AecGL(n—m) (6.11)
0 A
with

B(wy) €IV = D), T = [wg]. (6.12)

We recall thaZ ¢ AY(T*Q) is the annihilator ofz. The greek indices can be further decomposed
into two parts:

capital greek lettersb = 1, --- , r representing formeqe € 7O;
lower case greek letterst =m +r +1,--- ,n, wherer =dimI®, 0<r <n—m.

Matrix B can be writtenB = (B1, B>) where the firstisn x r and the second iz x (n —m —r).
Condition (6.2) is equivalent t8, = 0 and our choice of basis implies that

dwe involve only thews's and thew,'s; dw, involve at least one of the;.

The group of substitutions consist of matrices of the form

C B O
g=1]10 A, O , CeOm), A, e GL(r), A e GL(n—m —r). (6.13)
0 A1 A

In terms of frames we have

() = (e)C
(en) = (e)B1+ (ep)A, + (ey)Ar (6.14)
() = (epA2
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which in particular shows:

THEOREM 6.4. With the above notations, we have:
i) (e, eq) generate an intrinsic subspa¢g® 1+, annihilated byZ®.
i) Thee, generate an intrinsic orthogonal complemenof E in [ZM]+.
iii) There is complete freedom to choosedheo complete the full frame fdf, Q .

7. NON-HOLONOMIC TORSIONSAND CURVATURES

In this section we come back to the strongly non-holonomic. cdiseeB = 0 (and as we can take
C =id) we have

w; = w; (ie., '\'TQ) for i=1 .. m. (71)
We look at the original structure equations for the
dC()l' = (da,) = —C(),'./'C()j — WijgWy (72)

wherew;; = —w;; and we expand;, as a certain combination of the coframe basiswg (at this
point there is still freedom to choose the matixefining thewg). The result is of the form

dw; = —w;jwj + Vi), + S, 00,
We now use to our advantage the conditigh ~r w;; of Proposition 4.1. We can modify
Wi —> Eij = a),-j — p,ﬂwk (73)

With p;ji = —pjin SO
Yiri = Yiai = Yiai T Piko,
Yirk = Visk = Yirk + Prin = Virk — Dikn-
There is a unique choice @fs making they's symmetrical, namely

Yirk — Viri
Pikn = ,\kax (7.4)

Summarizing, we have the Cartan structure equations for strongly non-holonomic connections:

TuEOREM 7.1. (Cartan 1928, §6).Consider the non-holonomic connectidnwith connection
forms (1.4) modified as in (7.3). Thénand D have the same geodesics and

dw; = —Eijwj F YV ki Ok Oy + S3ui 0,0y (75)
dwy = Cjjew; N@; +mod T. (7.6)
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The formsw;; = —w;; are uniquely defined by the symmetry requirement

Virk = Vini- (7.7)

Cartan did not invest on computing curvatures [‘En méme temps qu’une torsion, le développe-
ment comporte une courbure, dontil estinutile d’e’crire I'expression analytique” (Cartan 1928, §8).
We take Cartan’s words as dogma, perhaps to be subverted in future work]. The curvature forms
for the connectio;; would be helpful to compute characteristic classes of the bufidie Q.

7.1. A CANONICAL CHOICE OF METRIC IN F = E*
Assuming the strongly non-holonomic hypothesis, (6.9) yields for each pair of ingligek,
Cikaly =0=ue =0. (7.8)

Interpreted as a linear system for thg this in particular implies

%m(m—l)Zn—m or m(m+1) > 2n .
We now work on the change of coframes
Wy =Agwy, a=m+1, .., n. (7.9)
The differentials of the latter are given by:
dw, = Agpdw, +mod T

dwy = Ay (—wyi0; — wypwg) +mod T

Now,
wy; = cijpw; +mod T (7.10)
so that
dw, = Cijow; Nwj+mod 7 (7.11)
with
Cija = AarCijn - (7.12)
We can choose matriA uniquely by a Gram-Schmidt procedure on the m linearly inde-
pendent vectoréc; ;) A =m +1,--- ,n in RMn-D/2),
Thus we obtain the conditions on thevectors(Cartan’s terminology):
> CijaCijp = Sap - (7.13)
ij

From this point on, in order to maintain the ortonormality conditions, the change of coframes
must be restricted td € O(n — m). Hence we get

THEOREM 7.2. (Cartan 1928, §89). Assume the strongly non-holonomic case. The conditions
(7.13) define uniquely a metriconTQ = E @ F.

An. Acad. Bras. Cieng(2001)73 (2)



184 JAIR KOILLER, PAULO R. RODRIGUES and PAULO PITANGA

7.2. GEOMETRIC INTERPRETATION OF TORSION

Recall theR" = E, valued 1-formy given by (3.6)
0="dy" =oju;

which is the integrand of (3.5). The quotes indicate that this is a loose notafiphijs' not exact.
Indeed, we compute

do = a'a)kuk —i—duj/\a)j .

Now, du; = —wy; ux by construction, so by Proposition 7.1

do = Z (dwy + Za)kj A a)j) Uy = Uy . (714)
. -

J

In the strongly non-holonomic case, Theorem 7.1 gives

dO = (yjuw ;@ + $3,uk@:0,) Uk - (7.15)

ProrosiTION 7.3. (Cartan 1928, 88).Consider an infinitesimal parallelogram i@ spanned by

vectorsu, v in T, 0, and the associated infinitesimal variatidw (u, v) in R™. If u, v belong toE,

there is no variation irR™ after the cycle. Forn € E, andv € EqL = F, the variation is given by

the torsion coefficientg,;’s. Foru, v € F, the variation is determined by the coefficients’s.
The symmetry (7.7) has the following interpretation:

do,n) -v=dw(,n) - u (7.16)

withu,v e E,, n € F,.
One can consider the non-holonomic connectiorFoassociated to the metric Moreover,
one can repeat the procedure in Theorem 7.1. Write

dEa = a)MEA + Sk)\aa)kwx + cijo,a,@j (717)

where the ambiguity on th&s can be removed by changing to anotigf = w;, + modw;] and
imposing the symmetr§;;. = Swey. @nd the antisymmetryg;, = —wy;..

Mutatis mutandisthe geometric interpretation of the torsion coefficiefits’s andc;;,’s is
analogous. In particular, there is no torsion for pairs € F.

It seems that these geometric interpretations were forgotten by the geometers from the 60’s
on. For instance, in the very influential lectures (Hicks 1965, p. 59), it is written: “as far as we
know, there is no nice motivation for the word torsion”.
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7.3. THE CASE WHERE F' IS INTEGRABLE

When the torsion coefficients in (7.5) all vanistip; = @;;w;, then all the forms/w; belong to
the ideal

J =lw1, ..., on] (7.18)

so by Frobenius theorem, the distributisn= 7+ is integrable.
One can construct a local fibratiéh — B, whose fibers are (pieces of) leaves. Choose

coordinates(q1, - -+ , gm, gm+1, go) ONU, such that(gs, - - - , g,,) are coordinates o® and the
fibrationis(g1, - , gm, g1, g2) — (g1, -+ , gm). The distributionE will be given by
dqe = baidq;. (7.19)

If the functionsh,; do not depend on the lagt—n coordinates, we have locally &t ~" action
onl/ — B and a connection on this (local) principal bundle. More generally, one can formulate
the following equivalence problems:

1. Given(wy, - - - , w,) acoframe o/, find a Lie groupG of dimensiom —m, a diffeomorphism
F:U — P = B x G and a connection on the principal bundtesuch that the distribution
E: w, = 0 onU corresponds to the horizontal spaces of the connection on P.

2. Add to the previous a Riemannian mefgion/ and assume that it i5-equivariant.

3. Same, requiring that the vertical and horizontal spaceg-arthogonal. In other words, the
vertical space$ x G correspond to the leaves 6f

Case 2) was considered in (Koiller 1992). The non-holonomic connectidn piojects to
a connection orB. Alternatively, it is also possible to use the Levi-Civita riemannian connection
DB on B, relative to the projected metric. We get an equation of the fDlgfﬁ = K (b) - b where
K is antisymmetric. The force in the right hand side is gyroscopic (does not produce work).

This forceK vanishes in case 3). This seems to be what Cartan had in mind in the abelian case
[“Si alors dans I'expression de la force vive du systéme on tient compte des équations des liaisons,
on obtient une forme quadratiquegn - - - , g¢,,, avec des coefficients fonctionsgg - - - , g,,. On
peut appliquer les équations de Lagrange ordinnaires.” (Cartan 1928, §10)]. We observe that in the
example of Caplygin’s sphere, we have the principal bundle with connektieis O (3) — SO (3),
and the vertical and horizontal spaces aotorthogonal. A “non-holonomic force” is present in
the reduced system even in Cartan’s homogeneous case.

8. RESTRICTED CONNECTIONS

In this section we adopt an “internal” point of view, as opposed to the “extrinsic” approach of the
preceding ones. Itis quite fragmentary and tentative, aiming to propose directions for future work.
We change the notation for the configuration space, which will be derdted
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Consider a subbundle — M of T M, and a vector bundl& — M.

DEerINITION 8.1. An E-connectionD on H is an operatoDys for X section ofE ands section
of H, satisfying:

* DisR-linear inX ands andC*(M)-linear inX.

e D s Leibnitzian ins:
Dx fs = X(f)s + fDxs .

To emphasize the fact that € E, we also call this object an Eestricted connectionWhen
H = E an E-restricted connection dhwill be called a non-holonomic connection @h

A comment is in order. This definition seems natural here but we have searched the literature
and have not found it. In fact, given a vector bunéile> M, the usual notion of a connectidn
on H (see e.g., Milnor and Stasheff 1974, appendix C) medh&aconnection orH, in the sense
of our Definition 8.1. We will call thoséull connections. That is is allowed to be any section
of TM, so one is able to covariantly differentiate allong any cur@e in M. The difference in
Def 8.1 is that the covariant differention is defined just for curves wihE. Therefore, to avoid
confusion, we called the connection in Definition 8.festrictedconnection.

Given a full connection, evidently, it can the restrictedBoor F. Given a (restricted) E-
connection oriH, can it always be extended to a (full) TM-connection? The answer is yes. Consider
the following “cut-and-paste” or “genetic engineering” operations:

Let

TM=E®F (8.1)

be a Whitney sum decomposition with projection operators denoteel fowver E parallel toF)
andQ (over F parallel toE).

i) Given a (full) connectionDyY on T M, it induces full connection®* on E andD? on F, by
restrictingY to one of the factors (say;) and projecting the covariant derivativey Y over
this factor. Since full connections are plentiful, so are restricted ones.

i) Given D', D? E-restricted (F-restricted, respectively) connectionsHanit is obvious that
Dys = Dy s + D% s defines a full connection of.

ProposITION 8.2. Given a non-holonomic connectidnZ-£) on E, andD**£) an F-connection
on E, the rule

DxY = Dypi"'Y + DGP'Y Y € T(E) (8.2)

defines a' M connection on E extending D. Hefeand Q are respectively the projections on E
(resp. F) along F (resp. E).
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REMARK 8.3. However, given an E-restricted connectibf in E and an F-restricted connection
D?in F, the rule
DxY = Dy Y1+ D%,Y>

fails to define a connection ifiM, because
X1(HY1+ Xo(f)Y2 # X(f)Y.
The equivalence problem can be rephrased as follohatacterize the class of full connections
D on M such that their non-holonomic restriction®? = D) have the same geodesics.
8.1. PARALLEL TRANSPORT AND GEODESICS

The basic facts about TM-connections (see Hicks 1965), chapter 5) hold also for E-restricted
connections. For instance,

* (DxY),, depends only on the values Bfe H along any curve(t) € M with ¢(0) = X,,.

 Parallel transport of a vectar, € H,, along a curve:(tr) € M with ¢ € E.

We slightly change the usual proofs (Hicks 1965). Take a local Hasisj = 1,---,p
trivializing H over a neighborhood C M and vectorfields,, --- , e, onU C M generatingt.
Heregq is the dimension of the fiber df and p the dimension of the fiber off. We definep?q
functionsI™, (1 <i,j < p, 1<k <g)onU by

Dohj =Y Tihi . (8.3)

Write
(0 =) arex .
k

We searchu; (1) such thati(r) = ) a;(t)h; satisfies
D:h(c(t)) = 0.

We get a linear system of ODEs pdimensions
da; ;
— 4+ @i} (1) = 0. (8.4)

ik

dt

wherel™/, (1) = T/, (c(1)) .

Recall that arE-connection onitself (thatigf = E) is called a non-holonomic connection on
E. The equatiorD.¢ = 0 gives a nonlinear system ir+- p dimensions (where is the dimension
of M andp = q is the dimension ofF) for x anda given by

dx,
dxt = Z aref(x) L<r<n,
e k=Lowp ' (8.5)
d_tj =— Z aiql(x)=01<j<p).
i,k=1,....p
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Heree! is ther — component (1 < r < n) of thek-th E-basis vector (< k < p) in terms of a
standard trivialization of" M.

8.2. TORSION AND CURVATURE

Let D, D two (full) TM-connections, and)E,BE their restrictions as E-connections along F.
Consider the difference tensor @i/

B(X,Y)=DxY — DxY ,X,Y e (TM).

Clearly B is C*°(M)-linear in both slots. Decompose = S + A into symmetric and skew-
symmetric pieces:

S(X,Y) = %[B(X, Y)+ B(Y,X)],AX,Y) = %[B(X, Y) — B(Y, X)] (8.6)
Consider also the torsions
Tp(X,Y) = DxY — DyX — [X,Y], T5(X,Y) = DxY — DyX — [X, Y] . (8.7)
Itis easy to verify
2AX,Y)=T((X,Y)-T(X,Y) . (8.8)

These objects clearly make sense in the restricted version. Recall (Hicks 1965, 6.5) the notion
of torsion associated to@, 1) tensor Pfe € M — P,, € End(T,,M)):

Tp(X,Y) = DxP(Y) — DyP(X) — P[X, Y] . (8.9)

Here we take for operatoP the projection overE along F. In the context of restricted
connectionsX, Y are vectorfields irE.

DerINITION 8.4. Let BE the restriction ofB to E, with values projected o along F, and
similarly defineS£, A£. Define the restricted torsion by

T5(X,Y) = DYY —D{X — P[X,Y],X,Y e ['(E) (8.10)
The latter is aE,, valued tensotv,,, w,) € E, x E, + TE(v,, wy,)
THeoOREM 8.5. The following are equivalent:
a) Dt andD” have the same E-geodesics.
b) Bx(X, X) =0forall X € I'(E).
c) Sg=0.

d) Br = Ag.
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CoroLLARY 8.6. The restricted connection8” and D" are equal if and only if they have the
same geodesics and the same restricted torsion tensors.

CoROLLARY 8.7. Given a restricted connectioﬁE, there is a unique restricted connecti@f
having the same geodesicsﬁg and zero restricted torsion.

Proor. The results on (Hicks 1965, section 5.4) follgeeis literisin the restricted context. For
instance, we show the latter. The uniqueness results from the second proposition. To show the
existence, we define

1—
DyY =DyY — ETE(X, Y) . (8.11)

DE is clearly anE-connection. We compute
E 1 E E
B (X,Y):ET(X,Y):A , S =0,

since the torsion is skew symmetric. Sir%e= 0, they have the same geodesics. Finally, a simple
calculation gives
TE=T" —24F =0

so DE has zero torsion. O

In terms of the original full connection, there is still too much liberty. We can exfefido
a full connection with arbitrary completion3”-£, DTM-F |n the spirit of Cartan’s approach, one
would like to characterize special completions. We plan to pursue this futurely. For this purpose,
Vilms (1967) and Vagner (1965) can provide the starting point.
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RESUMO

Nesta nota revisitamos a comunicacao de E. Cartan no Congresso Internacional da IMU em Bolonha, Italia.
As distribuicdes aqui consideradas serdo do mesmo tipo que as tomadas por Cartan, uma classe especi
gue chamamos fortemente ndo-holbnomas. Porém, preparamos o caminho para a aplicagdo do método c
equivaléncia de Cartan (uma ferramenta poderosa para a obtencéo de invariantes) a distribuicdes mais gerai
Palavras-chave: mecénica ndo holonémica, método de equivaléncia de Cartan, conexdes afins.
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