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ABSTRACT

The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid sur-

rounding is considered in this work. The theory of partial wave expansion related to this problem is revisited.

A physical model based on the analogy between acoustic scattering and potential scattering in quantumme-

chanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely,

the resonances. In this context, a physical model is devised in order to describe the air water interface

and the implications of the high density contrast on the various regimes of the scattering resonances. The

main results are presented in terms of resonance lifetime periods and quality factors. The explicit numeri-

cal calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and

underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Min-

naert’s period, which is the short lived resonance mode, called breathing mode of the bubble. As expected,

resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The

present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly

medium.

Key words: Acoustic Scattering, Minnaert Resonance, Semi-Classical Methods, Whispering Gallery

Modes, Mie and Rayleigh Scattering.

1 - INTRODUCTION

The problem of resonant acoustic scattering by air filled spherical cavity in a infinite liquid medium, so-

called single air bubble in water, is one of those famous problems in classical physics. Many scientists have
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devoted effort and time to find intriguing properties of this ubiquitous object. A brief historical account of

this problem tells it started out as an interest of the field of bubble cavitation in hydrodynamics and contin-

ued to attract a great deal of attention in modern research. Historically, the initial relevance was the problem

concerning the damage caused by collapsing air bubbles in water. This process caused the erosion of screw

propellers of ships and other naval structures. This is Lord Rayleigh’s seminal contribution. Rayleigh began

the field that produced a sequence of very interesting findings concerning the acoustic properties of bubbles.

Initially, the theory he devised neglected both viscosity and surface tension (Rayleigh 1917). Later, in 1933,

the physicist Marcel Minnaert became interested in knowing the origin of the noise that comes from the

breaking of the waves at sea or, simply, the noise of running water. He reduced his deductive method to the

elementary phenomena of a freely vibrating spherical bubble in water. Here, dissipative and surface tension

were also neglected. In his findings he found the natural frequency of oscillation of the bubble’s wall, since

the oscillations of the gas trapped inside and the pressure of the liquid outside work analogously as a mass-

spring system in a simple harmonic oscillator (Minnaert 1933, Leighton 1994, Ainslie and Leighton 2011).

Without dissipation, bubbles can be long lasting in water and they vibrate freely at a frequency known as

the Minnaert frequency. Incorporating surface tension and viscosity in Rayleigh’s model leads to damping

effects and temperature variations (Ainslie and Leighton 2011, Hickling and Plesset 1964). The interest in

this field is still strong due to the fantastic results in bubble sonoluminescence where the energy focusing

mechanism present in bubble oscillations and collapse, leads to light emission and temperatures of the order

of the sun’s surface (Putterman and Weninger 2000). Moreover, there are the significant findings on devel-

opments of contrast agents in biomedical research (Chomas et al. 2000) and new men made metamaterials

as well (Bretagne et al. 2011, Leroy et al. 2015).

In revisiting the partial wave model applied to acoustic scattering one finds the work of Victor Anderson

who showed that this formalism can be applied to the acoustic scattering of the bubble (Anderson 1950,

Feuillade and Clay 1999). Although, the approach does not deal exclusively with a differential equation

describing the dynamics of the radius of the bubble, it can also be generalized to consider damping effects.

Along this same line, the modal approach, Hebert Überall identified promising research in the partial wave

model and Minnaert’s idea. He applied quantum mechanical theory of resonance scattering to the classical

phenomenon of acoustic scattering from solid elastic targets (Flax et al. 1981). The application of resonance

theory by Überall and co-workers opened up unexplored field. From hereon, it becomes clear that research in

this area requires delving an interdisciplinary combination between hydrodynamics and resonance theory.

It must be mentioned that the latter theme has also been thoroughly dealt with by Moyses Nussenzveig.

Among the many works he authored, Nussenzveig gave physical interpretation to the scattering resonances

of a spherical dielectric particle. Gustav Mie, in 1905, solved the problem of electromagnetic scattering

by a dielectric sphere motivated by his interest to understand the colorful appearance of a gold colloids

(Nussenzveig 1992, 1969). Within the intricate mathematical combinations of special functions in Mie’s

solution, Nussenzveig applied an analogy between resonances in potential scattering of quantum mechanics

and electromagnetic scattering and reached physical interpretation where tunneling played a major role. This

made accessible a better understanding of the main physical phenomena responsible for the long lived Mie

resonances. Identifying a parallel between the works of Minnaert-Anderson-Uberall and Mie-Nussenzveig

one can verify that the role of tunneling phenomena in the acoustic resonances of a spherical air filled bubble

has not been explicitly considered before. Rayleigh’s approach and success inspired many researchers in a

continuous study of more elaborate models based on the differential equation that describes the dynamics
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of the bubble’s wall and damping through viscosity and surface tension. A comparison between the many

different models and their principles can be found in the suggested references (Prosperetti 1984, Leighton

1994, Ainslie and Leighton 2011). Among all the existing models on this field, the authors have chosen the

partial wave approach to study the proposed problem, since the important role of tunneling phenomenon on

acoustic resonances can only be properly considered within this model.

Nowadays (Putterman andWeninger 2000, Chomas et al. 2000, Garbin et al. 2009, Thomas 2009, Pierre

et al. 2014), the scattering of sound from spherical obstacles is an extremely important problem in many

research areas such as, non-invasive medical diagnosis, and industry (Zinin and Allen III 2009, Strybulevych

et al. 2012). In such problem, an incident acoustic wave, once scattered by an object, can excite mechanical

vibrational modes of the scatterer (Landau and Lifshitz 1987). These vibrational modes are the source of

secondary acoustic waves. These secondary waves are signatures of the self-sustained natural vibrations

that can be excited through resonance mechanism. The acoustical spectrum detected can give many types of

valuables informations about scattering objects. To this end, the development of complete theoretical models

for scattering of single objects is necessary (Morse and Ingard 1968). The partial wave formalism is one of

themethods for solving the problem. However, due to wave nature of this problem, we believe that a cautious

analogy with similar electromagnetic and quantum mechanics problems can improve the understanding on

this matter and in the next sections we will explore this possibility. From the acoustical point of view, this

work revisits the previous fundamentals works of Anderson (Anderson 1950, Feuillade and Clay 1999).

For this purpose, the excitation of normal modes of vibration of the air bubble in water is treated as a

scattering problem, where viscosity is neglected both in air and water. In this model, a plane wave impinges

on a spherical gas bubble in unbounded water (Morse and Ingard 1968, Anderson 1950, Feuillade and Clay

1999). In addition, the process of an oscillating force acting on the surface of the bubble, due to the difference

in pressure fields, makes the bubble expand and collapse (Leighton 1994). The energy coupling mechanism

between an internal pressure field and matter leads to the natural modes of vibration of the bubble surface.

The signature of this natural vibration is unique as the sound emitted is solely due to a self-sustained mode

of vibration. Experimental evidence is found on the detection of the frequency of microbubble vibration

(Thomas et al. 2009). Applications of this property can be found in the fields of ultrasound contrast agents

(Stride and Saffari 2003) and on the development and study of acoustic metamaterials (Leroy et al. 2015,

Bretagne et al. 2011), where an array of bubbles, as well as liquid foams, can be used to block the transmission

of sound. These metamaterials were used to completely block ultrasound transmission of some frequencies

suggesting acoustic insulation (Thomas 2009, Pierre et al. 2014, Leroy et al. 2015).

In this manner, in this work we apply Nussenzveig’s approach to the acoustic scattering by prescrib-

ing an effective potential to the bubble dynamics. This quantum mechanical technique can be applied in an

analogy to acoustic scattering of a gas filled spherical cavity in a liquid. This analogy is a basic concept for

understanding the nature of the bubble mechanical vibrations, since its analysis connects different phenom-

ena linked by common properties or similar behavior. For instance, in this work we introduced the concept

of “thin layer” in order to take into account the effects of high density water-air contrast in potential scatter-

ing, which resembles some features of the Woods-Saxon scattering potential in nuclear physics. Although

quantum physics differs from classical physics in both formalism and fundamental concepts there are a large

number of existing analogies between these fields. The present work calls into action two fundamental areas

of physics: fluid mechanics and the scattering methods of quantum physics. The results show the possibil-
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ity of attaining other regimes of the bubble surface vibration with much longer lifetimes than the Minnaert

resonance. Here, wave tunneling plays a fundamental role.

The following sections discuss the problem of resonant acoustic scattering of a spherical bubble in more

detail. To this end, the second section considers the partial wave series formalism applied to the scattering of

an incident plane pressure wave by a spherical air bubble immersed in unbounded water. In the third section

the condition for resonance regime is object of a deeper mathematical and physical inspection. In the fourth

section, numerical procedures elaborated from the semiclassical methods are used to precise determination

of the resonance positions and widths for the various acoustic oscillations regimes. Finally, the conclusion

section summarizes the present theoretical findings and discusses their physical implications to relevant

areas of acoustics.

2 - THEORY: PARTIAL WAVE EXPANSION FOR ACOUSTIC SCATTERING FROM AIR FILLED SPHERICAL

BUBBLE IMMERSED IN LIQUID WATER

The problem of sound scattering in three dimensions is related to solutions of wave equations which governs

the displacement potential u or pressure p (Olver 2014). The pressure function p can be taken as solution of

the pressure wave equation in the spherical coordinate system (Anderson 1950, Feuillade and Clay 1999).

In Fig. 1a the scattering configuration treated in this work is shown. A plane pressure wave is incident on

the gaseous spherical bubble immersed in unbounded liquid water medium. Here, as a first approximation

any viscosity effect is neglected and the inhomogeneous media is comprised of the inner gaseous spherical

bubble immersed in an unbounded liquid medium, which is water (see Fig. 1a). In other words, for a source-

less medium and in a given instant of time t the pressure function p(~r, t) can be given for any point ~r and it

satisfies the following wave equation (Shew 1994, Feuillade and Clay 1999):

ρ̃(~r)~∇ ·
[ 1

ρ̃(~r)
~∇p(~r, t)

]
− 1

c2(~r)

∂2p(~r, t)

∂t2
= 0. (1)

Here, it is assumed that the media is characterized by density ρ̃(~r) and sound speed c(~r) functions

respectively. Besides, due to the spherical symmetry of the scattering object it is suitable to solve Eq. 1 in

spherical coordinate system (r, θ, φ). In addition, the incident plane wave oscillates harmonically with an

angular frequency given by ω. So, for all space the pressure function should take the form,

p(~r, t) ≡ p(r, θ, φ, ω)e−iωt. (2)

Moreover, the inhomogeneity of the medium is properly described by sound speed and density contrasts,

respectively represented by:

c(~r) = c(r) =

{
c1 for 0 ≤ r < a,

c2 for r > a.
(3)

They are as follows: c1 is the speed of sound within the bubble, the gaseous medium, c2 is the speed of

sound in water. Besides, the media densities are such that

ρ̃(~r) = ρ̃(r) =

{
ρ1 for 0 ≤ r < a,

ρ2 for r > a.
(4)
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Figure 1 - The left panel (a) shows the scattering geometry, for an incident acoustic plane wave with related wave

vector ~k. The incident wave reaches a spherical gaseous bubble of radius r = a surrounded by unbounded liquid

water. Being the related sound velocity c1 = 340m/s and c2 = 1500m/s as well as the assumption of the densities

values as ρ1 = 1.269kg/m3 and ρ2 = 999.972kg/m3 respectively. The right panel (b) shows for this scattering

scenario, the strong oscillating behavior of the transcendental equation (see Eq. 13) ∆`(β) in the plane [`, β]. In this

gray scale color map, the white color is related to values of |∆`(β)| < 1 and the black color as |∆`(β)| > 10.

In this case, ρ1 is the density of the gaseousmedium and ρ2 the density of the water. For the sake of simplicity,

from hereon in, it is assumed that ρ2 > ρ1 and c2 > c1. In Anderson’s work the partial wave expansion in

spherical coordinates is developed for the spherical gas bubble (Anderson 1950, Feuillade and Clay 1999).

The present work follows similar approach, such that the wave number in the two medium are k2 = ω/c2
and k1 = ω/c1 and for pedagogical reasons it is suitable employ the following notation, namely:

N ≡ c2
c1
> 1. (5)

and

ρ ≡ ρ2
ρ1

> 1. (6)

The ratio N is defined as the relative refractive index and ρ as the relative density respectively. More-

over, being a the radius of the bubble, it is suitable to define the dimensionless size parameters β ≡ k2a

and α ≡ k1a = Nβ related to wavelengths in outer (water) and inner (gaseous spherical bubble) regions

respectively. Due to azimuthal symmetry, the pressure field in Eq. 2 can be expanded in the following partial

wave series:

p(r, θ, ω) =

∞∑
`=0

p`(r, θ, ω). (7)

An Acad Bras Cienc (2016) 88 (2)



770 ANDRÉ G. SIMÃO and LUIZ G. GUIMARÃES

Where the partial wave solution of the wave equation for pressure p` is obtained by applying the separation

of variables method to Eq. 1 in the spherical coordinate system. The result can be written as the following

product of functions (Anderson 1950, Feuillade and Clay 1999):

p`(r, θ, ω) = R`(r, ω)P`(θ). (8)

The function R`(r, ω) represent the solutions of the differential spherical-Bessel equation and P`(θ) repre-

sent the Legendre polynomials (Anderson 1950, Feuillade and Clay 1999). Hence, in the case of an incident

plane wave of amplitude Pinc, the partial wave p` is explicitly given by:

p`(r, θ, ω) = −Pinci`(2`+ 1)P`(θ)×


1 + E` h

1
` (βr/a) ; a ≤ r <∞

D` j`(αr/a) ; 0 ≤ r ≤ a.

(9)

The functions j`(x) and h
1
` (x) are the spherical Bessel and spherical Hankel functions respectively. The

coefficients E` and D` are obtained by applying the boundary conditions of continuity of the pressure and

the radial particle velocity at the bubble’s surface (r = a), namely (Anderson 1950, Feuillade and Clay

1999):

D` =
j′`(α)j`(β)− ghj′`(β)j`(α)

j′`(α)h
1
` (β)− ghh′1` (β)j`(α)

, (10)

E` = gh

[
h′1` (β)j`(β)− h′`(β)j

′
`(β)

j′`(α)h
1
` (β)− ghh′1` (β)j`(α)

]
. (11)

Where the parameters h = 1/N , g = 1/ρ as well as j′`(x) and h
′1
` (x) are the first derivative, with respect

to argument, of the spherical Bessel and spherical Hankel functions respectively (Anderson 1950, Feuillade

and Clay 1999). Moreover, Bessel and Hankel functions are known to present oscillatory behavior. It is

worth mentioning that there is a common denominator in Eqs. (10 and 11). Most importantly, for a certain

discrete set of the parameters {`, β} the denominator of these coefficients may assume very small values,

therefore leading to extremely high peak amplitudes (Flax et al. 1981) in Eq. 10 and Eq. 11. The present

study aims the search of the domain of parameters that produce maximum values of these coefficients (Flax

et al. 1981). To this end, the denominator of the coefficients is isolated for a close inspection due to their

important role in the discussions that follows. Simple algebraic manipulation leads to:

h
′1
` (β)

h1` (β)
− ρ2
ρ1

c2
c1

j
′

`(α)

j`(α)
= 0. (12)

For the sake of compact representation the following notation is adopted (Nussenzveig 1969, 1992,

Guimarães and Nussenzveig 1992):

∆`(β) ≡ [1β]− ρN [α] = 0. (13)

where

[1β] ≡
h

′1
` (β)

h1` (β)
, (14)

[α] ≡
j′`(α)

j`(α)
. (15)
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The transcendental equation∆`(β) in Eq. 13 can be solved in the β−complex plane with appropriate meth-

ods (Nussenzveig 1969, 1992, Guimarães and Nussenzveig 1992). In this plane, where i ≡
√
−1, the

solutions of this equation are generically expressed as:

β̄ = β − i b, (16)

where β is the resonance position and b is the related resonance width (Nussenzveig 1969, 1992, Guimarães

and Nussenzveig 1992). In general, the task of obtaining accurate solutions of Eq. 13 it is no longer trivial,

since∆`(β) is a strong oscillating complex function (Nussenzveig 1969, 1992, Guimarães and Nussenzveig

1992). For more details, notice in Fig. 1b the complex behavior of the function ∆`(β) in the plane [`, β].

In the next section a semiclassical theory is devised so as to obtain explicit formulas for accurate numerical

calculations and physical interpretation to the solutions of Eq. 13.

3 - SEMICLASSICAL THEORY FOR ACOUSTIC RESONANT MODES OF A SPHERICAL AIR BUBBLE IN WATER

It follows from the wave equation in Eq. 1 and the partial wave analysis in Eq. 8, that any radial function

R`(r, ω) must satisfy the following differential equation:

1

r

{
d2

dr2
(rR`)

}
+

{
ω2

c2(r)
− `(`+ 1)

r2

}
R` −

1

ρ̃(r)

dρ̃

dr

dR`
dr

= 0 (17)

As seen from Eq. 4 the value of the density ρ̃ is not well defined at r = a. Therefore, the density func-

tion should behave more like a distribution function. In order to estimate the physical implications of the

discontinuity of ρ̃ to the sound propagation within the interior region of the bubble, it is assumed that the

density ρ̃ is represented by a distribution function. In other words, we assume here that this function must be

continuous and differentiable on the whole space. More specifically, it is assumed that around the boundary

spherical interface r = a there exists a very thin layer of transition between the density values of the air as

well as of the water. This means that the density ρ̃(r) must continuously vary from the air to water density

values. Explicitly, the physical features of the transition layer are represented by ρ̃(r) given that:

ρ̃(r) ≈ √
ρ2ρ1

{
ρ2
ρ1

} 1

2

[
tanh

2(r−a)

δa

]
; 0 ≤ r <∞. (18)

Where the positive parameter δa� a is the width of the thin transition layer. This width is a real physical

quantity corresponding to a thin spherical shell. It should behave as a result of a mixture of air and the

accumulated water vapor on regions close to the boundary of the mathematical bubble surface at r = a. The

function in Eq. 18 is shown in Fig. 2. In this figure the thin transition layer δa is sketched exaggeratedly. It

is possible to note the ρ̃ density transition behavior between air and water. More specifically, when r = a

in Eq. 18 the function ρ̃ results in the geometric mean
√
ρ1ρ2 and as δa→ 0, Eq. 18 tends to piecewise Eq.

4 as well. Besides, based on distribution theory and assuming regions not so close to geometrical interface

r = a, the following relation can be considered,

dR`
dr

(1
ρ̃

dρ̃

dr

)
→

{
−d

2 ln ρ̃

dr2
R`

}
. (19)
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Figure 2 - Sketches a model (see Eq. 18) to the behavior of the density ρ̃ around

the bubble interface between water and air, where it is assumed that a thin layer

of width δa separates the two media. The inner medium (the air) has density ρ1
and ρ2 is the density of the outer medium (water).

With this in mind, it is possible to rewrite the radial equation in Eq. 17 suitably in an expression which

resembles a Schrödinger-like equation of the form (Guimarães and Nussenzveig 1992, Schiff 1968, Griffths

2005),

−1

r

d2

dr2
(rR`) + Ueff (r)R` =

( ω
c2

)2
R`. (20)

Henceforth, the Quantum Mechanics formalism can be introduced and applied to make the corresponding

interpretations. In other words, it is possible to solve the differential equation in Eq. 20 and obtain solutions in

an analogy with potential scattering in Quantum Mechanics (Nussenzveig and Wiscombe 1987, Guimarães

and Nussenzveig 1992, Griffths 2005). In this framework (in units of “~ ≡ 1 ” and “2m ≡ 1”), the sound

plane wave is interpreted as an incident “particle” with “positive energy (ω/c2)
2 ” subjected to an acoustical

scattering effective potential Ueff given as,

Ueff (r) =
`(`+ 1)

r2
−
( ω
c2

)2[
N2 − 1

]
− d2

dr2
[ln ρ̃]. (21)

In Fig. 3 the graphical representation of the function Ueff in Eq. 21 is shown. Notice that the effective

potentialUeff is composed by three independent terms, namely: The “repulsive centrifugal barrier”∆U`(r),

∆U`(r) ≡
`(`+ 1)

r2
, (22)

and two “attractive potential wells”. These last “potential wells”are related to variations in values of sound

speed as well as abrupt density changes in bubble air-water interface respectively. In other words, the ef-
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fective potential Ueff has contributions due to the “refractive index well”∆UN and the “contrast density

well”∆Uρ. Which are given by respectively:

∆UN (r) ≡ −
( ω
c2

)2[
N2 − 1

]
, (23)

and

∆Uρ(r) ≡ − d2

dr2
[ln ρ̃]. (24)

Figure 3 - Sketches the behavior of the effective potential Ueff as a function

of the radial coordinate r. The incident sound wave is related to the incident

particle of “energy” (ω/c2)
2. The “potential barrier” ∆Ueff (see Eq. 25) is

also shown.

According to the analogy proposed, the nearly “bound-states” of sound are, in fact, the ones related to the

acoustical resonances that are nearly trapped inside the bubble. The term “quasi bound state” (QBS) of sound

is here employed to designate these special modes of vibration that resemble atomic bound states of limited

lifetime. The word “quasi” is appropriate because of the radiating mechanism played by tunneling effect

that lead to limited lifetime. Tunneling is a natural wave phenomena related to propagation of evanescent

waves, occurring in quantum as well as in classical frameworks (Guimarães and Nussenzveig 1992). The

QBS resonance like has a determined time for its existence in the inner medium. This “mean lifetime” is

related to b the widths of the resonance (Guimarães and Nussenzveig 1992), which is strongly influenced

by behavior of the “energy barrier” ∆Ueff given here as,

∆Ueff =
( ω
c2

)2
[N2 − 1] +

16
√
3

9

ln
[
ρ
]

δa2
. (25)

Notice that ∆Ueff is a function of N , ρ and δa, but it does not explicitly depend on multipole order ` (see

Fig. 3). Besides, it should be recalled that a narrow resonance width b implies in a longer lifetime of the

resonant stationary wave inside the bubble, since it is expected that the resonance widths b decrease as the
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height of ∆Ueff increases (Guimarães and Nussenzveig 1992, Schiff 1968, Griffths 2005). Equation (25)

suggests that this mechanism might occur when the relative refractive index N and relative density ρ are

considerably high as well as the boundary surface layer depth δa is very thin. In fact, in the case of the

spherical gaseous bubble in water, due to high contrast between sound speeds and densities media N � 1

and ρ� 1 is a phenomenological reality. Besides, the mixture of air with water vapor accumulated around

the boundary r = a gives rise to a very thin layer medium where δa� a.

Within this context, it is feasible to assume the thin layer approximation in Eq. 18 presented above,

where the density transition region becomes a continuous function of the distance r. In the following sub-

sections, this approximation is used to obtain accurate resonance estimations and overview all the inherent

implications of the former evidences. In addition, it is important to note that the scattering potential in Eq. 21

permits the application of semiclassical methods, such as the JWBK theory (Guimarães and Nussenzveig

1992). This will lead to important mathematical relations that quantify the relevant physical parameters

related to present resonant bubble scattering problem.

S󰋛󰋣󰋟󰋙󰋢󰋗󰋩󰋩󰋟󰋙󰋗󰋢 A󰋤󰋗󰋢󰋯󰋩󰋟󰋩 󰋜󰋥󰋨 B󰋫󰋘󰋘󰋢󰋛 A󰋙󰋥󰋫󰋩󰋪󰋟󰋙 R󰋛󰋩󰋥󰋤󰋗󰋤󰋪 S󰋙󰋗󰋪󰋪󰋛󰋨󰋟󰋤󰋝

Within the analogy commonly found relating classical scattering and quantum scattering (Nussenzveig 1969,

1992), a semiclassical analysis is applied so as to evidence the important physical aspects of the problem of

the scattering of sound by an air bubble in water. Scattering problems often deal with incident particles, clas-

sical or quantum, which interact with targets with some internal structure. In this context, it is straightforward

to introduce the conceptual meaning of some scattering parameters.

Firstly, let us consider the situationwhere the penetrable scattering target is positioned at large distance d

from the incident particle (see Figs. 4a and b). In addition, we assume that for distance d >> a the interaction

of this idealized particle with the short range central force field potential Ueff (Eq. 21) is negligible. With

this idea in mind, the concept of the impact parameter I can be introduced and its relation with the angular

momentum “quantum number” ` can be sought for. In far field region d >> a and following de Broglie and

Planck (Schiff 1968), the semiclassical linear momentum of the incident “free particle” has magnitude ~k
(with k ≡ ω/c2 = k2) where ~ is Planck’s constant reduced. Moreover, due to symmetry of this problem,

it is possible to apply the Sommerfeld’s quantization rule (Schiff 1968) to the conservation of total angular

momentum and to establish the relation between ` and impact parameter I , namely:

~kI = ~
√
` (`+ 1) ≈ ~(`+ 1/2), (26)

Where within the semiclassical framework the Langer modification `(`+ 1) → (`+ 1/2)2 was introduced

(Schiff 1968). So it follows from Eq. 26 that,

I → I` =
(`+ 1/2)

k
. (27)

where I` is the related partial wave impact parameter. The geometrical meaning of I` can be readily

visualized in Fig. 4a and Fig. 4b. In the first case (see Fig. 4a), it is verified that

(`+ 1/2)

k
= I` > a, (28)

hence

(`+ 1/2) > β. (29)
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In similar manner, for the second case (see Fig. 4b), it is verified that

(`+ 1/2) < β. (30)

Figure 4 - Shows the scattering geometry in two distinct situations. In (a) is the case where the magnitude of the impact

parameter (I`) is I` > a and in (b) is I` < a.

On the other hand, in optics, when the refraction index of a spherical dielectric particle is N > 1,

it follows from the analogy between optics and other types of waves that the region with high intensity

(caustics) is limited between aplanatic spheres exterior and interior to the scattering target (Born and Wolf

1975). Here, the same interpretation is made to the acoustical scattering potential Ueff in Eq. 21, where now

the radii of these regions are given respectively as,

Rext ≡ Na , (31)

and

Rint ≡
a

N
. (32)

So, from Fig. 4a and Fig. 4b and Eq. 31 it can be seen that the partial impact parameters I` which is associated

with highly intense sound fields must satisfy the following geometrical criteria:

d >> Rext >> I`, (33)

in other words,

d >> Na >>
`+ 1/2

k
. (34)

This means that Eqs. (29, 30 and 34), suggest that there are two distinct types of scattering which permit

the build up of very intense sound fields. In the first case it follows from Eqs. (29 and 34) that the size

parameters should satisfy the following inequality:

β < (`+ 1/2) < α . (35)

The other case, which follows from Eqs. (30 and 34), results in another inequality:

(`+ 1/2) < β < α . (36)

The criteria for resonance phenomenon is now examined. Firstly, the inequality in Eq. 35 is carefully

examined and secondly, the condition expressed in Eq. 36 is then dealt with.
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Earlier in this work it was put forward that the poles of the coefficients in Eqs. (10 and 11) of the partial

wave expansion are solutions of the complex transcendental equation in Eq. 13. From the fact that in this

situation α > (` + 1/2), the Debye approximation (Debye 1909, Watson 1944, Abramowitz and Stegun

1972) for the Bessel functions gives us the following result,

[α] ≈ −
√
α2 − (`+ 1/2)2

α
tan[φ(α, `+ 1/2)− π

4
] , (37)

where φ(α, `+ 1/2) is given from the Bohr-Sommerfeld integral (Schiff 1968), namely:

φ(α, `+ 1/2) ≡
∫ a

r1

dr
√
k2 − Ueff . (38)

Where the internal turning point r1 < a in the interior of the bubble (see Fig. 5a) should satisfy Ueff (r1) =

k2 and it is given as,

r1 =
`+ 1/2

kN
=
I`
N
. (39)

Besides, in present problem we haveRint < r1 (see Eq. 32, Figs. 5a and 6a), consequently the total internal

reflection condition is always fulfilled, namely:

a

N
< r1 ⇒ sin (θc) =

1

N
<
r1
a

= sin (θR) . (40)

Figure 5 - In (a), for a given incident “particle” with positive energy k2 (k ≡ ω/c2) is shown the “Energy budget”

mechanism associated with the “excitation” of resonant “Quasi-Bound States”(QBS). Notice that r2 = I` = (` +

1/2)/k and r1 = I`/N . In (a), the classically allowed regions A1 and A2 correspond to propagating waves, whereas

the classically forbidden regions F1 and F2 are related to the evanescent waves. Figure (b) shows the equivalent

ray-trajectory picture related to these resonances.

Moreover, considering the domain of the thin boundary layer approximation δa → 0 the integral Eq.

38 gives the following approximation:

φ(α, `+ 1/2) ≈
√
α2 − (`+ 1/2)2 − (`+ 1/2) arctan

[√α2 − (`+ 1/2)2

(`+ 1/2)

]
. (41)
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On the other hand, in the case of the external turning point r2 > a, being r2 solution of Ueff (r2) = k2,

it can also be observed that Eq. 35 can be rewritten as:

a <
(`+ 1/2)

k
≡ r2 = I` < Rext . (42)

This situation can be readily be seen graphically in Fig. 5a. This figure shows the quasi-bound states

(Guimarães and Nussenzveig 1992) or a metastable state (Schiff 1968) which can occur when the effec-

tive potential Ueff allows the existence of three turning points, r1, a and r2. In this particular case there can

be found, in the scattering dynamics, a stationary wave (Guimarães and Nussenzveig 1992, Schiff 1968) in

the region usually called classically allowed A1 (r1 ≤ r ≤ a), and these waves can be coupled to the con-

tinuum behaving like progressively propagating waves in the other classically allowed region A2 (r > r2).

The ray picture trajectory can be associated with this scattering geometry, where in Fig. 5b it is seen an in-

cident acoustic plane wave with an associated value for the impact parameter I` that is considerably greater

than the sphere radius a. In other words, the incident particle which in realistic terms is an acoustic plane

wave, tunnels the barrier Ueff (Eq. 21) and is kept within the bubble through orbiting the inner boundary by

nearly-total internal reflections. In addition, in the present ray picture (see Eq. 40, Figs. 5 and 6), for the case

where the incident wave tunnels into the bubble, the internal incidence angle θR is above the critical value

θc = arcsin(1/N). The tunneled wave gets successively internally reflected and excites modes with high

lifetime values (Guimarães and Nussenzveig 1992). In these cases, inside the other two classically forbidden

regions F1 (0 < r < r1) and F2 (a < r < r2) the waves become evanescent. Moreover, in this semiclas-

sical regime, [1β] can be expressed in the Debye approximation (Debye 1909, Watson 1944, Abramowitz

and Stegun 1972) as:

[1β] ≈ −
√

(`+ 1/2)2 − β2

β
[1− ie−2ψ]. (43)

Whereψ(β, `+1/2) is the Gamow integral (Schiff 1968, Griffths 2005) related to tunneling in the classically

forbidden region F2 and it is given by:

ψ(β, `+ 1/2) ≡
∫ r2

a
dr
√
Ueff − k2. (44)

Besides, taking again the thin boundary layer limit δa→ 0, this integral can be approximated by:

ψ(β, `+ 1/2) ≈ (`+ 1/2) ln
[(`+ 1/2) +

√
(`+ 1/2)2 − β2

β

]
−
√

(`+ 1/2)2 − β2 . (45)

Together with Fig. 4a and Fig. 5a it can be seen that the underpinning for the physical mechanism of

the quasi-bound states resonances in the interior of the bubble is solely related to tunneling (Guimarães and

Nussenzveig 1992). So, in these semiclassical approximations the complex solutions β̄ = β − ib of Eq. 13

must satisfy the following transcendental equation:

tan
[
φ(Nβ̄, `+ 1/2)− π/4

]
=

1

ρ

√
(`+ 1/2)2 − β̄2

(Nβ̄)2 − (`+ 1/2)2

[
1− ie−2ψ(β̄,`+1/2)

]
. (46)

This equation is here solved assuming the approximation of the high density contrast between the media

(ρ >> 1) and also in the regime of very narrow resonances where,

0 < b� β . (47)
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Figure 6 - In (a): Similar to Fig. 5, shows the “Energy budget” mechanism associated with the “excitation” of the

Transmission Resonances (TR) associated to one classically forbidden region F̃1 and two classically allowed regions

Ã1 and Ã2 respectively. In (b) the figure shows the equivalent ray trajectory picture, where the incident acoustic plane

wave, for a given impact parameter I`, makes a direct collision with the spherical surface of the bubble. A fraction of

the incident beam is refracted at angle θt which is smaller than the incidence angle θi.

Taking the above facts in account, Eq. 46 is now given by the following set of coupled equations,

φ(Nβ, `+ 1/2) ≈ (n+ 1/4)π +
1

ρ

[√ (`+ 1/2)2 − β2

(Nβ)2 − (`+ 1/2)2

]
(48)

and

b ≈ β

ρ

√
(`+ 1/2)2 − β2

[(Nβ)2 − (`+ 1/2)2]
e−2ψ(β,`+1/2) . (49)

Equation (48) shows that for a given multipole `, the resonant size parameters β assume discrete values

as β → β`,n, where the mode index or order are integers such that n = 0, 1, ...nmax, being nmax + 1 the

maximal number of QBS resonances that are allowed to exist related to multipole `. Notice that in Eq. 49 that

the resonance width b is proportional to the penetration factor e−2ψ, that in QuantumMechanics framework

(Nussenzveig 1969, Guimarães and Nussenzveig 1992), it is analogous to the probability to find the particle

into the centrifugal barrier∆U`(22). In addition, within the approximation of β`,n << (`+ 1/2) it follows

from Eq. 48 that a rough estimation for β`,n is given by:

β`,n ≈ π

N
(`/2 + n) +

(`+ 1/2)

ρπN2(n− 1/4)
, (50)

when β`,n → (`+ 1/2) it can be estimated from above Eq. 50 that nmax must satisfy,

nmax ≈ int[`(
N

π
+

8

π3ρ
− 1

2
) +

2

Nρπ2
] , (51)

where int[a] is the integer part of a.

In order to clarify the meaningful results, a comparison between some scattering processes time scales

is now considered. For instance, for a given resonant multipole with order ` and applying Heisenberg’s
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uncertainty principle (Schiff 1968), it is possible to estimate τ` the related mean lifetime as (Guimarães and

Nussenzveig 1992),

τ` ≈
(
2πa

c1

)
1

Nb`
. (52)

Since the sound velocity inside the bubble is c1, the wave spends a time interval around (2πa/c1) to give a

complete turn in regions near the surface r = a. In addition, in this semiclassical regime of narrow resonance

(Guimarães and Nussenzveig 1992) shown in Eq. 47, the internal bubble surface transmission coefficient

behaves as Nb`, so the internal wave total number of turns can be asymptotically estimated as 1/(Nb`).

Furthermore, τ` can be interpreted as the time scale in which the resonant acoustic energy stays trapped

by internal multi-reflections inside the bubble. Moreover, the time related to bubble surface oscillations

(Devaud et al. 2008) is the Minnaert’s (Minnaert 1933) period TM , that is given by:

TM =
2π

ωM
, (53)

with ωM as Minnaert’s angular frequency (Minnaert 1933, Devaud et al. 2008, Ainslie and Leighton 2011)

written as,

ωM =

√
3c21ρ1
a2ρ2

. (54)

So, an inspection of τ` for a QBS resonance phenomena permits a comparison between the period of the

incident wave T ≡ 2π/ω, TM and τ`. It follows from Eqs. (49 and 52) in the limit where β`,n << (`+1/2)

that,

τ` ≈
3T 2

M

T
e2`ln(`+1/2) � TM . (55)

It is verified that Minnaert’s period TM arises here as a natural time scale, since it is the shortest period of

time associated to an acoustic resonance frequency, establishing a natural lower limit to such time scale. The

expression in Eq. 55 tells us that the acoustic resonant energy stays confined in the interior of the bubble

even after a great number of cycles of the bubble surface oscillations. Showing that the bubble in a QBS

resonance regime is a robust resonant acoustic cavity with an extremely high quality factor Q` given by,

Q` ≡ β`/b` ≈ τ`/T . (56)

In other words, the bubble is a resonant cavity that supports mechanical variations of its surface without

strong attenuation of the related `-th acoustic multipolar resonant QBS mode (Flax et al. 1981), even in

the regime of small values of the multipole `. In addition, when compared to other resonant cavities this

special acoustical bubble feature is not found in others well established high–Q resonant cavities such as

Fabry-Perot like electromagnetic superconducting (Blais et al. 2004) or, even still, in Lasing microdroplets

associated to Mie resonances (Alexandr et al. 2012).

T󰋞󰋛 A󰋙󰋥󰋫󰋩󰋪󰋟󰋙 “T󰋨󰋗󰋤󰋩󰋣󰋟󰋩󰋩󰋟󰋥󰋤 R󰋛󰋩󰋥󰋤󰋗󰋤󰋙󰋛󰋩” M󰋥󰋚󰋛󰋩 󰋥󰋜 󰋪󰋞󰋛 B󰋫󰋘󰋘󰋢󰋛

Let us discuss another possible resonance behavior case, the one shown in Fig. 4b, where the impact parame-

ter I` = (`+1/2)/k is smaller than the radius a of the spherical bubble. In this situation the scattering energy

budget can be understood in Fig. 6a with an associated ray trajectory picture given in Fig. 6b. The total inter-

nal reflection criteria is satisfied either (see Eq. 40), but the scattering dynamics for this new configuration
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is noticeably distinct from the previous case. Now there are only evanescent waves in a classically forbidden

region (see Fig. 6a), named F̃1 (0 < r < r1), while in the classically allowed regions Ã1 (r1 ≤ r < a) and

Ã2 (r ≥ a) there are propagating waves. More specifically, in this particular case, the barrier ∆Ueff (25)

is “almost transparent” to incident wave and by total internal reflection it can be trapped into the bubble.

Fig. 6b shows this situation. A ray picture illustrates how the incident acoustic wave impinges the spherical

surface of the bubble, and by refraction, is transmitted to the internal medium. In other words, for a given

multipole `, Figs. (6a and 6b) show in this case that it is possible excite an acoustic resonant mode that can

undergo yet several internal reflections before decaying in a lifetime which is smaller than the corresponding

QBS resonances.

For this new configuration, the physical mechanism that can generate highly intense acoustic fields

in the interior of the bubble and in its surroundings is the constructive wave interference, that in quantum

mechanic picture is related to the Transmission Resonance (TR), this last being very similar to the Ramsauer-

Townsend effect in atomic physics (Schiff 1968, Griffths 2005). In order to investigate this subject in more

details we adopt the semiclassical ideas again. So, for β > (`+ 1/2) Debye’s approximation (Debye 1909,

Watson 1944, Abramowitz and Stegun 1972) applied to Eq. 13 yields:

tan[φ(Nβ, `+ 1/2)− π/4] ≈ −i
ρ

√
β2 − (`+ 1/2)2

(Nβ)2 − (`+ 1/2)2
. (57)

Again, applying the sharp resonances approximation β̄ = β − ib (0 < b� β), in Eq. 57, we obtain that:

φ(Nβ`,n, `+ 1/2) ≈ (n+ 1/4)π, n > nmax (58)

and

b`,n ≈
β`,n
ρ

√
β2`,n − (`+ 1/2)2[

(Nβ`,n)2 − (`+ 1/2)2
] , (59)

which can be simplified to

b`,n ≈ bmx

√
1−

(
`+1/2
β`,n

)2

[
1−

(
`+1/2
Nβ`,n

)2] , (60)

where for this particular case of transmission resonances,

bmx ≡ 1/(ρN2) (61)

is the maximum asymptotic value that resonance widths b`,n(60) can attain. Notice that the value of bmx in

Eq. 61 depends only the relative refractive index N and density ρ. In addition, bmx is a decreasing function

of N and ρ. Moreover, in the high contrast limit where ρ � 1, Eq. 58 gives an explicit rough estimate to

value of the resonance position β`,n which is

β`,n ≈ π

N
(`/2 + n), n > nmax. (62)

In this asymptotic limit of ρ� 1, the transmission resonance β`,n in Eq. 62 doesn’t explicitly depend on the

relative density ρ. Besides, analyzing the spacing between resonances, Eq. 62 shows that these transmission

resonances lead to small resonant shifts such as,

β`+2∆n,n ≈ β`,n+∆n . (63)
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In other words, in the partial wave series (Eq. 7) for the acoustic pressures fields, in the context of the trans-

mission resonances, the many multipoles give rise to resonance position values which are extremely close,

hereon in designated as “Quasi-Degenerate States” (QDS), in correspondence to the analogous condition

in Quantum Mechanics (Schiff 1968, Griffths 2005). As an example, taking ∆n = ±1 in Eq. 62 the result

β`±2,n ≈ β`,n±1 is obtained. So, the resonant multipoles of consecutive order and defined parity (even or

odd) have similar values of the Transmission Resonance positions. In addition, in this TR regime the related

resonance widths can be also very close to the constant asymptotic value bmx which is analogous to similar

QDS with “broken symmetry” problems in Quantum Mechanics (Schiff 1968). In this particular situation,

it is important to note that the incident acoustic energy is partitioned between these Quasi-Degenerated

Transmission Resonance modes.

On the other hand, it follows from Eqs. (60 and 52) that it is possible to verify that the mean lifetime τ`
related to the `–th multipolar transmission resonances can be estimated to be,

τ` ≈ 3
T 2
M

T
> 3TM > TM . (64)

Notice that in the above geometrical acoustic asymptotic regime, τ` does not depend on the multipole order

`. Moreover, the values of τ` ≈ O(TM ) can be reached when one takes the solutions of Eq. 13 in the

geometrical acoustic limit, where the resonant bubble in ray picture resembles a Fabry-Perot optical cavity

(Devaud et al. 2008). In addition, Eqs. (64 and 63) tell us that after many cycles of surface oscillation, the

bubble can yet retain a considerable quantity of energy in its interior. This is due to the excitation of some

degenerates modes under transmission resonances regime, including the ones associated to multipoles of

lowest orders (Gaunaurd et al. 1979).

Finally, it is necessary to discuss theMinnaert resonance phenomenon based on present analogy between

quantum mechanics and acoustic. First of all, it is important to comment the very low frequency Minnaert

resonance. This occurs as a monopole mode (with ` = 0) and it leads to a resonance excited inside the bubble

(Gaunaurd et al. 1979). In this particular situation and in the present picture of Transmission Resonances

with ` = 0, it is possible to rewrite the inequality in Eq. 36 as:

0 . β < α. (65)

Thus, it is a special case where the analogy with the Ramsauer-Townsend effect is completely fulfilled [see

Schiff’s book (Schiff 1968), p. 123-124]. In other words, this transmission resonance is an internal bubble

stationary s-wave like, an omnidirectional resonant monopole with ` = 0, where the related size parameter

β should satisfies the transcendental equation in Eq. 13. In this special case, the transcendental equation can

be explicitly written as:

tan (N β) =
ρN β

iβ − 1 + ρ
. (66)

Taking the limits of high density contrast (ρ� 1) and very low frequency (β � 1), Eq. 66 for β → βm can

be approximated by:

1

3
βm

2N3 +
βm

2N3 −N

ρ
+ i

βmN

ρ
≈ mπ,with m = 0, 1, ... (67)

The above Eq. 67 shows that the resonance shift ∆βm ≡ βm+1 − βm can be estimated by the following

expression:
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βm+1 ≈ βm +
3π

2βmN3

(
1− 3

ρ

)
(68)

This recurrence equation in Eq. 68 suggests that the value of resonance position increases as the order m

increases and for N → ∞, these kind of TR resonant modes could be quasi-degenerated either as well. In

addition, Eq. 68 shows that it is possible to estimate the value of high order resonance position βm+1 using

the value of βm. Thus, it is initially suitable to solve the complex Eq. 67 for fundamental modem = 0. This

task can be performed in the limit of sharp resonances (βm → βm − ibm with bm � βm), which results in

the following expressions respectively:

β0 → βM =

√
3

N
√
ρ
≡ a

ωM
c2

(69)

and

b0 → bM =
3

2

1

N2ρ
=

3

2
bmax (70)

Where the formulae for Minnaert’s angular frequency ωM and resonance width bmx are given by Eqs. (54

and 61) respectively. Therefore, the Minnaert resonances family which are the complex solutions of tran-

scendental equation(66) can behave as quasi-degenerated transmission resonances either. More specifically,

the expressions in Eqs. (68, 69 and 70) suggest that the fundamental modem = 0 related to usual acoustic

Minnaert resonances is very similar to Ramsauer-Townsend resonance in nuclear or atomic physics (Schiff

1968) and it is the broadest bubble transmission resonances, consequently its related lifetime τM is the

shortest and it can be estimated as,

τM ≈ 2TM . (71)

Thus, in this case of Minnaert like resonances the acoustic energy is sustained within the bubble

approximately only during two cycles of bubble surface oscillations.

4 - RESULTS

This section discusses accurate numerical calculations designed to solve Eq. 13 according to the two distinct

resonant scattering configurations identified above. More explicitly, for a given relative density ρ and mul-

tipole ` a numerical algorithm was developed adopting the following procedures: firstly, Eq. 51 is used to

estimate nmax, the maximal number of QBS modes. For a given resonance order 0 ≤ n ≤ nmax, the second

step was to solve in β–real plane the JWKB transcendental equation (see Eq. 48) using as an initial guess

the estimate in Eq. 50. Finally, in order to solve in β–complex plane Eq. 13, it was necessary to develop a

subroutine based on generalized Newton’s method that use the previous JWKB results as improved initial

guess. In the case where the order n is greater than nmax, the Transmission Resonances (TR) modes can

be excited. However, due to modal degeneracy, related to these resonances, the transcendental Eq. 13 was

solved in β–complex plane using a generalized Muller’s method where the JWKB (see Eqs. 58 and 60)

estimates to TR were used as an initial guess either.

The present model does not consider the dissipative effects due to viscosity. The validity of the present

results implies that the bubble radius dimension should be assumed greater than few micron meters (Urick

1948, Holdaway et al. 1999). It is known that viscosity can play a central role for bubbles of smaller radii,

leading to a drastic reduction of the mean lifetime of the resonance (Urick 1948, Holdaway et al. 1999); In
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this manner, a comparison between the present results with experimental data, necessarily imposes a restric-

tion on the set of parameters where dissipative effects are most negligible. Thus, for frequencies ranging

from 20kHz to 200MHz, it is assumed a scattering scenario related to an incident ultrasonic plane wave

reaching bubbles with radius greater than 10µ. Experiments conducted on these lines can be found in the

study of optical tweezing microbubble to observe their dynamics when submitted to ultrasound (Garbin

2006). So under these assumptions, in this present case the size parameters β varying from 10−1 to 102

were considered. Besides, typical parameter values for water and air were adopted, where the relative den-

sity, refractive index and internal reflected critical angle θc are ρ ≈ 788.39, N ≈ 4.41 and θc ≈ 13.11◦

respectively.

In Fig. 7a, the resonant positions (β`,n, left vertical axis) and widths (b`,n, right vertical axis) for QBS

and TR resonances are plotted for a resonant quadrupole (` = 2) as the resonance order n varies. It seems

that even at a very low multipole order such ` = 2, the resonance widths b`,n for QBS and TR are still

considerably sharp as predicted by JWKB approximate results given by Eqs. (49 and 60) respectively.

Figure 7 - For ` = 2 and for several resonances orders n, shows in panel (a) in a double vertical axis the resonance

position (β`,n, left vertical axis) as well as the resonance width (b`,n, right vertical axis), in case for Bubble’s Quasi-

Bound State (QBS) and Transmission (TR) Resonances. The panel (b) shows the behavior of the Q`,n–factor as n

varies.

In addition, Fig. 7a shows, as expected (see Eq. 49), that in the case of ` = 2 only two (nmax = 1) QBS

resonances can be excited. Besides, it may also be noted in Fig. 7a that the TR like resonances occurs only

for values of β`,n ≥ `+ 1/2 = 2.5 and the related resonance order n such that n > nmax. Besides, the left

vertical axis in Fig. 7a shows that the TR like resonances widths b`,n can reach the asymptotic value bmx only

in the limit of geometrical acoustics, where β`,n→∞ >> ` + 1/2. In addition, Fig. 7b shows for ` = 2 the

behavior of the quality factor Q`,n (see Eq. 56) as the resonance order n varies. It is interesting to note that

Q`,n reaches a minimum value around 105 related to the first TR mode that occurs for n = 2 = nmax + 1.

Here it is important to notice that the present results are corroborated by those reported in the pioneering

work of Gaunaurd, Scharnhorst and Überall (Gaunaurd et al. 1979). At least three decades ago, these authors

(Gaunaurd et al. 1979) have shown the possibility of existence of narrow monopolar resonances in bubbles

either.

As it is shown by Eqs. (49, 60 and 51) respectively, by increasing the multipole order ` it is expected that

sharper resonances occur and nmax the maximum number of QBSmay rise. This is exactly found and shown
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in Fig. 8a, where ` = 7 and nmax = 6. In other words, when comparing Figs. 7a and 8a it is seen that nmax
increases linearly as ` increases. Since by raising the angular momentum ` (see Eq. 27), it linearly increases

the value of the impact parameter I`, which in the effective potential picture, means a deeper potential well

∆Ueff (see Eq. 25). As a consequence of thisUeff behavior, sharper resonance widths b`,n ≈ bmx ≈ 5.10−5

are found even for larger values of the resonance order n as it is shown by the right vertical axis in Fig. 8a.

Besides, Fig. 8b shows that Q`,n related to QBS modes vary in range from 1010 to 106 and similar to Fig.

7b, Q`,n has a minimum at n = 7 = nmax + 1 related to excitation of the first TR mode for this particular

case of ` = 7.

Figure 8 - Similar to Fig. 7, but for multipole ` = 7 this figure in (a) shows as function of the resonance order n the

resonance positions (β`,n, left vertical axis) as well as the widths (b`,n, right vertical axis) for the Bubble’s Quasi-Bound

State (QBS) and Transmission (TR) Resonances. The panel (b) shows the behavior of the Q`,n–factor as n varies.

Moreover, the graphs in Figs. 9 and 10 show the Quasi-Degenerated Transmission Resonances for

several positions β`,n (β`,n ≥ ` + 1/2) and widths b`,n (b`,n ∼ O(bmx)), for a related set of resonance

orders n > nmax. In Fig. 9a the behavior of the TR is analyzed in the case of even multipoles values

` = 2, 4, 6. Here it is important to note the convergence proximity of the resonance positions (β`+2,n ≈
β`,n+1 ≈ β`−2,n+2), situation very similar to a quasi-degenerated energy levels in quantum mechanics

picture (Schiff 1968, Griffiths 2005). Besides, Fig. 9b shows that these resonances are also considerably

sharp, since b`,n ∼ bmx ≈ 5.10−5. Finally, Fig. 10a for resonance positions β`,n and Fig. 10b for widths

b`,n, respectively, show that all the above mentioned Quasi-Degenerated Transmission Resonances features

are also maintained when plotting TR related to the odd multipole values ` = 3, 5, 7. The next section, we

comment and summarize the main results of this work.

5 - CONCLUSIONS

In this paper the acoustic resonances of a spherical air bubble cavity in unbounded water (see Fig. 1a) are

calculated. Above all the mathematical complexity of the difficult calculations (see Fig. 1b), a physical

interpretation is needed to clarify the results. To this end, the concept of effective potential Ueff explicitly

given in Eq. 21 (see Figs. 5 and 6) is applied according to the analogy between acoustic waves and matter

waves in quantum mechanics (Nussenzveig 1969, 1992, Guimarães and Nussenzveig 1992). Within this

framework, the JWKB perturbative method was employed to calculate such resonances, as well as to give
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Figure 9 - For even multipoles ` = 2, 4, 6, this figure shows for Quasi-Degenerated Trans-

mission Resonances the behavior of the positions (top panel–a) and widths (bottom panel–b)

as the resonance order n varies.

a physical interpretation to present results. The JWKB method is suitable for resonance calculations in

asymptotic “high-energy” (ω/c2)
2 values regime. Despite of this fact, it is observed in the case of resonances

calculations, that the JWKB method provides satisfactory estimates even very close to the Rayleigh regime,

where the bubble radius is of the same order of the incident wavelength such that β ≤ ` ≈ O(1) (see Fig. 7a).

In addition, the present results suggests that the bubble is a very robust resonant cavity with extremely high

quality factor Q`,n ranging from 1010 to 105 (see Fig. 8b and Fig. 7b). Consequently, the resonant bubble

An Acad Bras Cienc (2016) 88 (2)



786 ANDRÉ G. SIMÃO and LUIZ G. GUIMARÃES

Figure 10 - Similar to Fig. 9, but for odd multipoles ` = 3, 5, 7, this figure shows the

behavior of positions (β`,n, top panel–a) and widths (b`,n, bottom panel–b) as function of n

in the case of the Quasi-Degenerated Transmission Resonances.

can efficiently store acoustic energy during long time intervals. A time duration that is even greater than

the period of its surface Minnaert oscillations (see Eqs. 55 and 64). In relation to this fact, it was observed

that there are two distinct categories of bubble narrow resonance, namely: in the first case, the tunneling of

the incident wave to interior of bubble can excite nmax QBS (Quasi-Bounded States of the sound), while

in another particular situation, the incident wave can generate collectively various acoustic vibration modes

analogous to the TR (Transmission Resonances) in quantum mechanics. The width b`,n of these latter type

An Acad Bras Cienc (2016) 88 (2)



TUNNELING EFFECTS IN RESONANT ACOUSTIC SCATTERING 787

of resonances show a particular behavior; it tends asymptotically to a constant value bmx (see Figs. 7 and

8). More specifically speaking, a remarkable TR feature is the modal quasi-degeneracy (see Figs. 9 and 10),

where many resonant `–multipoles with same parity (odd or even values) can simultaneously vibrate inside

the bubble during the mean lifetime interval τ , which in general is longer than the Minnaert bubble surface

oscillation period TM (see Eq. 64). Moreover, since the relative refractive index N is greater than unity, it

is important to comment that for both TR and QBS resonances, one of the most important mechanism that

supports these long resonancemean lifetimes τ is the occurrence of almost perfect internal reflection. Finally,

in the present picture, it has been shown that the Minnaert oscillation can be interpreted as a broader (see

Eq. 70) very low frequency Transmission Resonances (see Eq. 69 and the inequality in Eq. 65, respectively)

with the shortest lifetime (see Eq. 71).

In addition, comparing laser cavities in microdroplets (Alexandr et al. 2012) with present acoustic bub-

bles cavities, regardless the value of the excited resonant multipole `, we conclude that bubbles are more

efficient in storing energy. We believe that this particular feature of the bubble is mainly due to high density

contrast between air and water at bubble surface. Notice that this large value of the density gradient arises at

r = a an almost impenetrable potential barrier for any value of the angular momentum ` (see Eqs. 21, 24 and

25). In other words, we think that the bubble is an extremely robust acoustic resonant cavity due to almost

total internal reflection and wave tunneling through barrier ∆Ueff (25), these features permit the bubble to

sustain very narrow resonances (even in the case of low-order multipoles `) with related high Q-factors (for

instance see Figs. 7 and 8) and such resonances should be collectively quasi-degenerated. We believe that

these mechanisms can take considerable amount of the incident acoustic energy and efficiently retain this

energy inside the bubble during several oscillations of its surface.

Summing up, although very preliminary considerations have been treated above, the authors believe that

the present results open a new perspective to a problem that has been deeply considered in many respectful

works. The new results point out two different resonant regimes which may give a physical explanation

to the impressive acoustic energy storage mechanism within the bubble. In addition, the present analysis

can have some implications in other fundamental scientific research areas, such as the studies on a sono-

luminescencing bubble (Putterman and Weninger 2000), the medical and technological developments of

using an acoustic beam with a suitable frequency bandwidth to excite special resonant vibrational modes

of a spherical bubble cavity (Chomas et al. 2000, Garbin 2006) as well as human made acoustic insulating

metamaterials (Thomas et al. 2009, Pierre et al. 2014, Leroy et al. 2015). Besides, from the theoretical point

of view, we think that this work offers to the experimental acoustician an opportunity of further exploration

of the bubble resonances by considering other forms of beam incidence for resonance excitation. In order to

improve the present results, our next step is to obtain a better understanding of the role of energy dissipative

mechanisms such as the viscosity and the surface tension effects in bubble resonance phenomenon. More

specifically, in analogy with Mie scattering in dielectric spherical drops, we know that the occurrence of

very small absorptive inclusions on a droplet’s surface can suppress resonances (Simão et al. 2001, 2005).

So we hope that in the case of acoustic scattering by osculating microbubbles, the viscosity and the surface

tension should increase the width of the resonances. Moreover, we think that during the bubble drag in the

water, the surface tension cannot be strong enough to maintain the bubble shape as perfectly spherical. In

this way, still making analogy with size and shape effects in Mie scattering, it is well known that in the case

of light scattering by non-spherical microdroplets, due to the broken spherical symmetry, the angular mo-

mentum degeneracy is lifted and for spheroidal droplets the resonance widths increases as the aspect ratio
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increases (Chýlek et al. 1995, Bambino et al. 2003, Gorodetsky and Ilchenko 1994). Summarizing, all these

above effects contribute to increase the value of resonances widths, consequently the related value of the

Q-factor should be less than the similar idealized case of non viscous spherical bubble. These studies are in

progress and they are planned to be submitted for publication briefly.
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RESUMO

O problema tratado neste trabalho é o espalhamento ressonante do som por uma bolha de ar imersa na água. O formalismo do espa-

lhamento acústico em ondas parciais, relacionado ao problema proposto, é revisitado. Com base na analogia entre o espalhamento de

partículas na mecânica quântica e o espalhamento acústico, os modos de vibração naturais da bolha, denominados de ressonâncias,

são descritos e interpretados. Dentro deste contexto, um modelo foi elaborado para descrever fisicamente a interface ar-água e as

implicações do grande contraste entre as densidades nos vários regimes dos modos naturais de oscilação da bolha. Os resultados

principais estão apresentados em termos dos períodos relacionados aos tempos de vida das ressonâncias e nos fatores de qualidade

da cavidade. Considerando as dimensões típicas das bolhas e os comprimentos de ondas sonoras em água, foram executados cálculos

numéricos esplícitos utilizando a análise assintótica. É demonstrado que os períodos de duração de vida das ressonâncias obedecem

uma escala de acordo com o período de Minnaert, que é o menor tempo de vida de uma ressonância, denominado de modo de res-

piração da bolha. Como esperado, as ressonâncias de maior tempo de vida resultam em fatores de qualidades de cavidade Q muito

expressivos que variam entre 1010 a 105. As descobertas teóricas aqui expressas indicam uma melhor compreensão do mecanismo

de acúmulo de energia existente em um meio repleto de bolhas.

Palavras-chave: Espalhamento Acústico, Ressonâncias de Minnaert, Métodos Semi-Clássicos, Modos de Galeria de Sussurros,

Espalhamentos Mie e Rayleigh.
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