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ABSTRACT

A new three-scale model to describe the coupling between pH -dependent flows and transient ion trans-
port, including adsorption phenomena in kaolinite clays, is proposed. The kaolinite is characterized by
three separate nano/micro and macroscopic length scales. The pore (micro)-scale is characterized by
micro-pores saturated by an aqueous solution containing four monovalent ions and charged solid particles
surrounded by thin electrical double layers. The movement of the ions is governed by the Nernst-Planck
equations, and the influence of the double layers upon the flow is dictated by the Helmholtz-Smoluchowski
slip boundary condition on the tangential velocity. In addition, an adsorption interface condition for the
Na+ transport is postulated to capture its retention in the electrical double layer. The two-scale nano/micro
model including salt adsorption and slip boundary condition is homogenized to the Darcy scale and leads to
the derivation of macroscopic governing equations. One of the notable features of the three-scale model is
the reconstruction of the constitutive law of effective partition coefficient that governs the sodium adsorption
in the double layer. To illustrate the feasibility of the three-scale model in simulating soil decontamination
by electrokinetics, the macroscopic model is discretized by the finite volume method and the desalination
of a kaolinite sample by electrokinetics is simulated.

Key words: electrical double layer, electro-osmosis, homogenization, kaolinite, Nernst-Planck, Poisson-
Boltzmann.

INTRODUCTION

The quality of groundwater in clayey soils is strongly influenced by the electrochemistry, which is dictated

by the electrochemical interactions that occur between the pore fluid and the minerals. Hydrogeochemical

processes, including dissolution, precipitation, ion-exchange, hydrolysis, electroosmosis, electromigration,

sorption and desorption, control the variation in chemical composition of groundwater (Mitchell 1993,
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Sposito 1989). Whence, accurate descriptions of such phenomena are of utmost importance when predict-

ing the movement of ionic contaminant plumes, such as heavy metals, coming from improper disposal of

sludges and waste water. In addition, the development of comprehensive computational models to study

the effectiveness of removal procedures in environmental remediation and clean-up scenarios becomes a

crucial issue (Alshawabkeh and Acar 1996, Narasimhan and Sri Ranjan 2000).

The demand for innovative clean-up methods has motivated the development of substantial attempts

to use enhanced technologies instead of classical decontamination techniques such as soil flushing, chemi-

cal treatment and bioremediation. Among the innovative technologies, electrokinetic remediation became

one of the most emerging clean-up procedures successfully reported and cost-effective for remediation

of low-permeable soils (Acar et al. 1995, Virkutyte et al. 2002). The effectiveness of this method, par-

ticularly its low operation cost, degree of control over the movement of the contaminants, and potential

applicability to a wide range of contaminant types, has been the subject of a huge amount of literature

(Virkutyte et al. 2002). In recent years, a number of laboratory-scale and field-scale studies have shown the

technical feasibility of electrokinetic processes in removing various contaminants from fine-grained soils.

The remediation process involves passing a low-level DC electrical current/electrical field between elec-

trode pairs embedded in the polluted soil to induce the movement of electrolyte solution and the transport

of soluble contaminants toward the electrodes (Alshawabkeh and Acar 1996).

During the electrokinetic remediation process, the applied electric field consists of the main driving

force for phase movement and leads to the well-known electroosmotically induced flow (Mitchell 1993).

Electroosmostic phenomenon creates strong electrochemical interactions between the minerals and the

aqueous solution, and gives rise to many other macroscopically observed electrochemical processes

(Mitchell 1993).

Within the issue of electro-chemo-hydro-mechanical models for colloidal systems, a significant

amount of research has been undertaken and a wide range of theories have been developed (Guimarães

et al. 2007, Loret et al. 2002). Consequently, different schools of thought have appeared giving rise to

purely macroscopic phenomenological approaches (Acar et al. 1995, Narasimhan and Sri Ranjan 2000),

models based on Thermodynamics of Irreversible Processes and Onsagers reciprocity relations (Lai et al.

1991) and multiscale methods (Lemaire et al. 2007, Moyne and Murad 2006a). In particular, in order

to a better understanding of the correlation between the complex electrical double layer theory at the

nanoscale (Hunter 1994) and the macroscopic response of the clay, it becomes essential to develop multi-

scale approaches (Lemaire et al. 2007, Moyne and Murad 2006a). Such framework has shown a capability

of capturing and coarsening the coexistence of several strong couplings of different physicochemical and

electrochemical nature occurring at disparate space and time scales (Lima et al. 2008, Moyne and Murad

2006a). Within the framework of two-scale models, phenomena such as electro-osmosis and electro-

migration naturally appear in the homogenized forms of the convection-diffusion equations and Darcy’s

law (Moyne and Murad 2006a). This approach has been extended to clay soils composed of two levels

of porosity (nano and micro pores) and led to the appearance of three-scale models of dual porosity type

(Murad and Moyne 2008).

The aforementioned models were developed for electrolyte solutions composed of two fully dissoci-

ated monovalent ions Na+ and Cl− and constant pH = 7. Consequently, chemical protonation/de-

protonation reactions, which occur between the H+ ions and surface charge groups at the surface of the
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charged particles, were neglected. The extension of the multiscale procedure to incorporate the pH depen-

dent protonation/deprotonation chemical reactions, giving rise to a nonlinear behavior of the surface charge

density, remains an open issue (Dangla et al. 2004). First attempts at incorporating pH effects within

the framework of homogenization were pursued in (Lima et al. 2008) for steady flow and ion transport

neglecting transient adsorption effects. Thus, the influence of the pH on the magnitude of the partition

and retardation coefficients was not discussed. The backbone of the research developed herein is the

generalization of the above-mentioned models to incorporate the dependence of transient adsorption on

the pH . To accomplish this task, we adopt the formal homogenization procedure of periodic structures

based on asymptotic developments (Auriault 1991, Sanchez-Palencia 1980). This approach leads to the

derivation of macroscopic governing equations with effective parameters, such as partition coefficient and

electro-osmotic permeability, ruled by the electrochemistry that occurs at micro and nanoscale (Fig. 1).

Fig. 1 – Sketch of the three natural length scales in kaolinite (Mitchell 1993).

The three-scale model is discretized by the finite volume method (Patankar 1980) and applied to

numerically simulate a transient electro-osmotic experiment of desalination of a kaolinite sample. Boundary

conditions of Danckwerts’ type are enforced at the anode for the sodium transport governed by the Nernst-

Planck equation.

NANOSCALE MODELLING FOR ADSORPTION

We begin by modelling the electro-chemistry of the kaolinite particles at the nanoscale. Consider a two-

phase system composed of rigid solid particles that bear an interface charge excess. The solid matrix is

filled by a continuum dielectric aqueous dilute solution containing four monovalent electrolytes (Na+,

H+, Cl−, O H−). We adopt the thin electrical double layer (EDL) assumption wherein the Debye’s length

L D , whose magnitude is of the same order of the effective thickness of the diffuse layer, is assumed small

compared to the characteristic length scale of the micro-pores (Fig. 2(a)). Thus, under this assumption,

adjacent double layers do not overlap and, consequently, variations in the electric potential normal to the

particle are much more pronounced than in the tangential one. Consequently, under local equilibrium con-

ditions, the electric potential is governed by the Poisson-Boltzmann equation posed in an one-dimensional

domain (Hunter 1994). In addition to the ionic concentrations in the electrical double layer, we incorpo-

rate adsorption/desorption phenomena owing to protonation/deprotonation reactions involving the H+ ions

at the surface of the particles.
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ELECTRICAL DOUBLE LAYER

Let {F, R, T } be the set composed of Faraday constant, universal ideal gas constant and absolute temper-

ature, and let ϕ be the electric potential of the EDL along with Ci and Cib, i =(Na+, H+, Cl−, O H−),

the molar concentration of the ionic species in the EDL and in the bulk fluid, respectively. Denoting

ϕ = Fϕ/RT the corresponding dimensionless electric potential, the ionic concentrations in the EDL and

in the bulk fluid are related by the Boltzmann distribution

Ci± = Cib exp (∓ϕ) i = (Na+, H+, Cl−, O H−) . (1)

Denote �l
∗ = (0, L D) the one-dimensional nanoscopic subdomain in the normal direction to the clay

surface occupied by the electrolyte solution with L D :=
(
ε̃0̃εr RT/2F2Cb

)1/2
designating the Debye’s

length (Hunter 1994), ε̃0 the permittivity of the free space, ε̃r the dielectric constant of the solvent, and

Cb the total concentration of cations (or anions) in the bulk fluid. The electroneutrality condition imposes

the constraint

Cb = CNab+ + CHb+ = CClb− + CO Hb− (2)

with CHb+ and CO Hb− ruled by the ionic product of water

KW := CHb+CO Hb− = 10−8
(
mol/m3

)2
. (3)

In the usual fashion, let E = −dϕ/dz be the component of the electric field orthogonal to the surface

with z the normal coordinate (Fig. 2(a)), and q := F (CNa+ +CH+ −CCl− −CO H−) the net charge density.

Using the Boltzmann distribution (1), the one-dimensional Poisson-Boltzmann problem reads as

d2ϕ

dz2
= −

q

ε̃0̃εr
=

2FCb

ε̃0̃εr
sinh ϕ in �l := (0, `∗) (4)

where z = `∗ refers to a point further away from the interface (`∗ > L D). The above equation is

supplemented by boundary conditions at particle wall z = 0 and at the distance z = `∗. For non-overlapping

adjacent EDLs, the electric field at z = `∗ vanishes, whereas at the particle surface the electrical field

balances the surface charge density σ

dϕ

dz
= 0 at z = `∗ and

dϕ

dz
= −

σ

ε̃0̃εr
at z = 0 . (5)

The unidimensional Poisson-Boltzmann problem (4) together with boundary conditions (5) govern the

local behavior of electric potential at the nanoscale around the kaolinite particle. Under the thin double

layer assumptions, an analytical relation between ϕ and the zeta potential ζ := ϕ(z = 0) can be obtained

(Lima et al. 2008)

ϕ =
4RT

F
arctanh

[
tanh

(
Fζ

4RT

)
exp

(
−

z

L D

)]
. (6)

Further combining (5(b)) and (6), and using the definition of L D , we deduce the following relation

between σ and ζ

σ =
2̃ε0̃εr RT

F L D
sinh

(
Fζ

2RT

)
=

√
8̃ε0̃εr RT Cb sinh

(
Fζ

2RT

)
. (7)
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The surface charge density of the particles attracts the counter-ions to the vicinity of the mineral, giving

rise to the adsorption/desorption capacity of the EDL 0i i =(Na+, H+, Cl−, O H−). The definition of

0i reads as

0i± :=
∫ z=L D

z=0

(
Ci± − Cib

)
dz . (8)

To derive the analytical representation of 0i , we introduce the dimensionless coordinate z = z/L D

normal to the surface, multiply the Poisson-Boltzmann equation (4) by 2dϕ/dz and use the chain rule.

After integrating from an arbitrary z inside the EDL to the point `∗ = `∗/L D in the bulk solution, using the

thin double layer assumption, we obtain
(

dϕ

dz

)2

= 2 (cosh ϕ − 1) . (9)

Using the relation sinh (ϕ/2) = [(cosh ϕ − 1) /2]1/2, this equality can be rephrased as

−dz =
dϕ

2 sinh
(

ϕ

2

) =
dϕ

exp
(

ϕ

2

)
− exp

(
−ϕ

2

)

The nanoscopic representation of 0i can be obtained using (1) in (8) along with the above change of

variable. This yields

0i± = −Cib L D

∫ ϕ=0

ζ

[
exp (∓ϕ) − 1

exp
(

ϕ

2

)
− exp

(−ϕ

2

)dϕ

]

= 2Cib L D

[
exp

(
∓

Fζ

2RT

)
− 1

]
(10)

As the surface charge and the ζ -potential vary strongly with the pH of the electrolyte solution,

the closure of the system is tied-up to the construction of this dependence that can be accomplished by

invoking the kinetics of the protonation/deprotonation reactions presented next (Chorover and Sposito

1995, Ganor et al. 2003, Huertas et al. 1997).

PROTONATION/DEPROTONATION CHEMICAL REACTION

In addition to the ion adsorption in the EDL, protonation/deprotonation reactions take place at particle

edges. Considering hexagonal form of the kaolinite particles (Mitchell 1993), we assume that the charge

due to isomorphous substitutions on the basal hydroxyl and siloxane planes are negligible compared to the

one produced by broken bonds on the lateral edges (Fig. 2(b)) (Brady et al. 1996).

1-pK model

We adopt a model based on a single protonation/deprotonation chemical reaction. Denoting M a metallic

ion lying in the tetrahedral (Si4+) or octahedral (Al3+) layers, and K the equilibrium constant associated

with the chemical reaction, under the assumption of local equilibrium, the protonation/deprotonation

reaction can be represented in the form

(> M − O H)− 1
2 + H+ 
 (> M − O H2)

+ 1
2

K :=

{
(> M − O H2)

+ 1
2
}

{
(> M − O H)− 1

2
}
CH+

0

(11)
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(a) Description of the Electrical Double Layer (EDL).

(b) Kaolinite particle geometry with structure composed of siloxane/hydroxyl planes and broken bond edges.

Fig. 2 – EDL and mineralogic structures of kaolinite.

where { j} = γ j/0M AX is the dimensionless surface concentration of the j species, γ j the surface density

of the reagent/product ( j = M − O H, M − O H2),

0M AX := γ{
(>M−O H2)

+ 1
2
} + γ{

(>M−O H)
− 1

2
}

the maximum surface density (mol/m2) and CH+
0

= CHb+ exp (−Fζ/RT ) the H+ concentration at the

kaolinite surface (mol/ l). From the above definition, the excess in surface charge due to the protonic

adsorption γH+ is defined as

σ := FzγH+ := Fz
(

γ{
(>M−O H2)

+ 1
2
} − γ{

(>M−O H)
− 1

2
}
)

X (12)

where z = 1/2 is the valence. To complete the characterization of σ , one needs to postulate a constitutive

law for γH+ that can be obtained by rewriting (11) in the form

γ{
(>M−O H2)

+ 1
2
} = Kγ{

(>M−O H)
− 1

2
}CH+

0

which, together with the definition of the maximum surface density 0M AX , gives

γ{
(>M−O H)

− 1
2
} =

0M AX

1 + K CH+
0

γ{
(>M−O H2)

+ 1
2
} =

0M AX K CH+
0

1 + K CH+
0

(13)
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Using (13) in (12), we deduce

γH+ :=
(

γ{
(>M−O H2)

+ 1
2
} − γ{

(>M−O H)
− 1

2
}
)

= 0M AX

(
K CH+

0
− 1

K CH+
0

+ 1

)

(14)

and

σ :=
FγH+

2
=

F0M AX

2

(
K CH+

0
− 1

K CH+
0

+ 1

)

. (15)

The above results provide the constitutive laws for the pair (σ , γH+). Experimental data for the

constants K and 0M AX can be obtained by performing an optimization procedure between our model and

the titration experiments reported by Huertas (Huertas et al. 1997). This yields K = 105.5 l/mol and

0M AX = 3.0 sites/nm2 (Lima et al. 2008). The model for the particle-fluid interface is now established:

given the values (Cib, L D) (i =Na+, H+, Cl−, O H−), by collecting the results (1), (7) and (15), our

nanoscopic model consists of solving the following set of nonlinear algebraic equations for the unknowns

(CH+
0

, σ , ζ )





CH+
0

= CHb+ exp
(

−
Fζ

RT

)

σ = (8̃ε0̃εr RT Cb)
1/2 sinh

(
Fζ

2RT

)

σ =
F0M AX

2

(
K CH+

0
− 1

K CH+
0

+ 1

)
(16)

After computing the constitutive dependence of the ζ -potential, we can make use of (10) to quantify

the EDL exchange capacity 0i .

The numerical constitutive relations ζ = ζ(CNab+, CHb+) and 0Na = 0Na(CNab+, CHb+) are depicted

in Figure 3. We observe a stronger dependence of the ζ -potential on the pH than on the Na+. In the basic

regime (pH > 5.5), the ζ -potential becomes negative and, consequently, the Na+ immobilization in the

EDL increases and vice-versa in the acid regime (Fig. 3). Regarding the constitutive response of ζ and

0Na+ with salinity, we may note that, in the acid regime ( pH < 5.5), an increase in salinity leads to an

increase in the positivity of the ζ -potential, which implies in the desorption of the Na+.

MICROSCOPIC MODELLING

At the microscale, the clay is envisioned as a two-phase system composed of kaolinite particles and micro-

pores filled by an aqueous solution. The characteristic length of the macro-pores l of O(10−6m) is much

greater than the nanoscopic thickness of the EDL. Whence, the nanoscopic descriptions of the ζ -potential

and EDL adsorption are incorporated in the microscopic model through an effective boundary condition.

MICROSCOPIC GOVERNING EQUATIONS

Following the usual framework of multiscale models, we begin by establishing the governing equation at

the microscale. Let � = �s ∪� f ⊂ <3 be the microscopic domain occupied by the biphasic porous media

composed of solid particles and micro-pores, and 0 f s the boundary between the solid and fluid subdomains

(Fig. 2(a)). The solid domain �s is formed by kaolinite particles carrying the surface charge density. The
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(a) Zeta Potential as a function of pH . (b) Zeta Potential as a function of Na+.

(c) Na+ Adsorption as a function of pH . (d) Na+ Adsorption as a function of Na+.

Fig. 3 – Dependence of the zeta potential and Na+ EDL adsorption on pH and CNab+ .

subdomain � f is occupied by the bulk solution containing four ionic monovalent solutes (Na+, H+, Cl−,

O H−). We assume that H+ and O H− ions reach the equilibrium in a much faster time scale compared

to the one associated with the movement of Na+ and Cl−. Under this assumption, the pH of the bulk

solution is constant, but its magnitude plays a crucial role in the hydrodynamics and transport of Na+ and

Cl− (Lima et al. 2008). In our subsequent analysis, we consider the aqueous solution movement and Na+/

Cl− transport governed by the classical theory of viscous fluids and transient Nernst-Planck equations,

respectively (Samson et al. 1999).

Hydrodynamics

Assuming the bulk fluid as an aqueous Newtonian incompressible solution, neglecting gravity and convec-

tion/inertial effects, the hydrodynamics is governed by the classical Stokes problem

∇ ∙ v = 0

μ f 4v − ∇ p = 0 in � f (17)

where v is the fluid velocity, p the pressure and μ f the water viscosity.
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Ion Transport

In addition to the advection induced by the velocity v, ion diffusion is due to the sum of Fickian and

electromigration components that govern the spreading of the ionic species under concentrations and electric

potential gradients, respectively (Sherwood 1994). Denoting t the characteristic time scale of the transport,

the Na+ and Cl− movements are governed by the Nernst-Planck equation (Samson et al. 1999)

∂CNab+

∂t
+ ∇ ∙ (CNab+v) − ∇ ∙

[
DNa+

(
∇CNab+ + CNab+∇φ

)]
= 0

∂CClb−

∂t
+ ∇ ∙ (CClb−v) − ∇ ∙

[
DCl−

(
∇CClb− − CClb−∇φ

)]
= 0 in � f (18)

where Di refers to the binary water-ion diffusion coefficients (i = Na+, Cl−) and φ := Fφ/RT the

dimensionless microscopic electrical potential.

To derive the equation for the conservation of charge, we begin by defining the electric current If

If := F (JNa+ − JCl−) where

Ji := Cibv − Di
(
∇Cib ± Cib∇φ

)
(i = Na+, Cl−)

denotes the total convective/diffusive ionic flux of each solute. By subtracting the Nernst-Planck rela-

tions (18) for the Cl− from the Na+, using the above definition together with the electroneutrality condi-

tion (2) and the ionic product of water (3) by recalling our time scale assumption, where CHb+ and CO Hb−

are assumed constant, we obtain conservation of charge

∇ ∙
(

A∇CNab+ + B∇φ
)

= 0 (19)

with the new coefficients given by

A := F (DNa+ − DCl−)

B := F

[

(DNa+ + DCl−) CNab+ + DCl−

(

1 −
KW

C2
Hb+

)

CHb+

]

(20)

Boundary conditions

We begin by establishing the proper velocity interface condition for the Stokes problem (17). Owing to the

presence of the thin electrical double layer surrounding each kaolinite particle, we postulate the so-called

Smoluchowsky slip boundary condition (Murad and Moyne 2008) wherein the tangential velocity exhibits

a discontinuity at the interface. We, then, have

v ∙ τ =
ε̃0̃εrζ

μ f
∇φ ∙ τ

v ∙ n = 0 on 0 f s

It remains to establish the interface conditions for the Nernst-Planck equations. To this end, we invoke

the conservation of mass at the interface, which states that the time derivative of the EDL adsorption
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quantities 0i (i = Na+) balances the diffusive flux normal to the particle surface (Auriault and Lewan-

dowska 1996). Recalling the constitutive law for the EDL adsorption reconstructed from the nanoscopic

modelling 0Na+ = 0Na+(CNab+, CHb+) and the assumption of constant pH , using the chain rule, the

boundary conditions are given by

− DNa+
(
∇CNab+ + CNab+∇φ

)
∙ n = Kd

∂CNab+

∂t
(

A∇CNab+ + B∇φ
)
∙ n = 0 on 0 f s

where Kd := ∂0Na+/∂CNab+ is the partition coefficient.

SUMMARY OF THE TWO SCALE MODEL

The two-scale nanoscopic/microscopic model consists in: given the constants {μ f , KW , DNa+ , DCl− , F, R,

T, A, CHb+}, the electric conductivity B depending on CNab+ and CHb+ find, the microscopic fields {v, p,

CNab+ , φ } satisfying






∇ ∙ v = 0

μ f 4v − ∇ p = 0

∂CNab+

∂t
+ ∇ ∙ (CNab+v) = ∇ ∙

[
DNa+

(
∇CNab+ + CNab+∇φ

)]

∇ ∙
(

A∇CNab+ + B∇φ
)

= 0

in � f (21)

supplemented by boundary conditions





v ∙ τ =
ε̃0̃εrζ

μ f
∇φ ∙ τ

v ∙ n = 0

−DNa+
(
∇CNab+ + CNab+∇φ

)
∙ n = Kd

∂CNab+

∂t(
A∇CNab+ + B∇φ

)
∙ n = 0

on 0 f s (22)

As we shall observe next, by invoking the constitutive responses of the zeta potential ζ = ζ(CNab+ ,

CHb+) and EDL adsorption coefficient 0Na+ = 0Na+(CNab+, CHb+) reconstructed from the nanoscopic

modelling in Figure 3, we can build-up the response functions for the electroosmotic permeability KE =

KE(CNab+, CHb+) and partition coefficient Kd := ∂0Na+/∂CNab+ = Kd(CNab+, CHb+).

HOMOGENIZATION

In this section, we apply the asymptotic homogenization theory (Sanchez-Palencia 1980) to upscale the

microscopic model to the macroscale. The kaolinite is characterized by a periodic structure with two

disparate length scales: the microscopic scale l of the order of the size of the micropores, and the macroscopic

length scale L of the overall dimension of the medium. Within the framework of homogenization, we

introduce the perturbation parameter ε = l/L whose magnitude, under the assumption of scale separation,

is ε � 1.
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To capture the correct physics in the process of up-scaling, the coefficients of the microscopic model

must be properly scaled in powers of ε. This is accomplished by estimating the dimensionless quantities

in the local description. Following the classical homogenization analysis of the Stokes problem, the fluid

viscosity is scaled by ε2 (Auriault 1991). Further, we assume convective and diffusive effects of the same

order of magnitude, so that the Peclet number Pe is of O(1). Denoting tre f a reference time for the

EDL adsorption, we follow Auriault (Auriault and Lewandowska 1996) and consider the case wherein the

Dankholer number Da = Kd L/DNa+ tre f , which measures the ratio between adsorption and diffusion at

the interface, is of O(ε).

MATCHED ASYMPTOTIC EXPANSION

To upscale the microscopic model to the macroscale, we adopt the formal homogenization procedure based

on perturbation expansions (Auriault 1991, Sanchez-Palencia 1980). Within this framework, each property

is considered dependent on both global and local length scales in the form f = f (x, y), where x and y

denote the macroscopic and microscopic coordinates, respectively. Up to a translation, x and y are related by

y = x/ε. By the chain rule, the differential operator is replaced by ∇ = ∇x + ε−1∇y . The usual procedure

to obtain the homogenized problem consists in postulating asymptotic expansions for the unknowns

f ε(x, y) =
∞∑

k=0

εk f k(x, y)

with the functions f i = f i (x, y) (i = 0, 1, 2...) y-periodic. Inserting the ansatz into the microscopic

governing equations and collecting the powers of ε, we obtain successive equations at different orders

∇y ∙
[

DNa+

(
∇yC0

Nab+ + C0
Nab+∇yφ

0
)]

= 0 (23)

∇y ∙
(

A∇yC0
Nab+ + B0∇yφ

0
)

= 0 (24)

∇y ∙ v0 = 0 (25)

∇y p0 = 0 (26)

∇y ∙
(
C0

Nab+v0
)
+ ∇x ∙

[
DNa+

(
∇yC0

Nab+ + C0
Nab+∇yφ

0
)]

+ ∇y ∙ J0
Na+ = 0 (27)

∇x ∙
(

A∇yC0
Nab+ + B0∇yφ

0
)

+ ∇y ∙ I0
f = 0 (28)

J0
Na+ = −DNa+

[(
∇xC0

Nab+ + ∇yC1
Nab+

)
+ C0

Nab+

(
∇xφ

0
+ ∇yφ

1
)

+ C1
Nab+∇yφ

0
]

(29)

I0
f = A

(
∇xC0

Nab+ + ∇yC1
Nab+

)
+ B0

(
∇xφ

0
+ ∇yφ

1
)

+ B1∇yφ
0

(30)

∇x ∙ v0 + ∇y ∙ v1 = 0 (31)

μ f 4yyv0 − ∇y p1 = ∇x p0 (32)

∂C0
Nab+

∂t
+ ∇x ∙

(
C0

Nab+v0
)
+ ∇y ∙

(
C0

Nab+v1 + C1
Nab+v0

)

+ ∇x ∙ J0
Na+ + ∇y ∙ J1

Na+ = 0 (33)

∇x ∙ I0
f + ∇y ∙ I1

f = 0 (34)
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whereas the successive orders of the interface conditions read as

[
DNa+

(
∇yC0

Nab+ + C0
Nab+∇yφ

0
)]

∙ n = 0 (35)
(

A∇yC0
Nab+ + B0∇yφ

0
)

∙ n = 0 (36)

v0 ∙ n = 0 (37)

v1 ∙ n = 0 (38)

v0 ∙ τ =
ε̃0̃εr

μ f

[
ζ 0

(
∇xφ

0 + ∇yφ
1
)
+ ζ 1∇yφ

0
]
∙ τ (39)

J0
Na+ ∙ n = 0 (40)

I0
f ∙ n = 0 (41)

J1
Na+ ∙ n = K 0

d

∂C0
Nab+

∂t
(42)

I1
f ∙ n = 0 (43)

Using classical arguments of the formal homogenization procedure (Lima et al. 2008), our set of

non-oscillatory variables, depending only on (x, t), is {p0, C0
Nab+ , φ

0
, ζ 0, B0, V 0

sli p, K 0
d }. In addition, the

closure problems for the fluctuations {C1
Nab+ , φ1} are given by the linear relations

C1
Nab+ (x, y, t) = f (y) ∙ ∇xC0

Nab+ (x, t) + C̃Na+ (x, t)

φ
1
(x, y, t) = f (y) ∙ ∇xφ

0
(x, t) + φ̃ (x, t) (44)

with the characteristic tortuosity vectorial function f = f (y) satisfying the canonical Neumann problem

{
4yyf (y) = 0 in Y

∇yf (y) n = −n on ∂Y f s

. (45)

To derive the macroscopic Nernst-Planck equation for the Na+ transport, we begin by introducing the

volume averaging operator over the periodic cell

〈χ〉 :=
1

|Y |

∫

Y f

χdy 〈χ〉 f s :=
1

|Y |

∫

∂0 f s

χdy .

By averaging (33), we obtain

〈∂C0
Nab+

∂t

〉
+

〈
∇x ∙

(
C0

Nab+v0
) 〉

+
〈
∇y ∙

(
C0

Nab+v1 + C1
Nab+v0

) 〉
+

〈
∇x ∙ J0

Na+ + ∇y ∙ J1
Na+

〉
= 0

Recalling that {C0
Nab+, φ

0
} are y-independent, defining η := |Y f |/|Y | and V0

D := 〈v0〉 the macroscopic

porosity and Darcy’s velocity, respectively, using Gauss theorem and the interface condition (42) gives

η
∂C0

Nab+

∂t
+ ∇x ∙

(
C0

Nab+V0
D

)
+ ∇x ∙

〈
J0

Na+

〉
= −

∫

∂0 f s

J1
Na+ ∙ nd0 = −

〈
K 0

d

〉
f s

∂C0
Nab+

∂t
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Using the constitutive law for the flux (29) along with the closure relations in (44), we obtain the

macroscopic result

R0 ∂C0
Nab+

∂t
+ ∇x ∙ Jeff

Na+ = 0

Jeff
Na+ = C0

Nab+V0
D + ∇x ∙

[
Deff

Na+

(
∇xC0

Nab+ + C0
Nab+∇xφ

0
)]

with the effective diffusivities and the retardation coefficients defined as

Deff
Na+ := DNa+

〈
I + ∇yf (y)

〉
R0 := η +

〈
K 0

d

〉
f s .

The effective charge conservation equation can be obtained in a straightforward fashion. By averaging

(34) and using boundary condition (43), we obtain

∇x ∙
〈
I0

f

〉
= 0 .

Denoting Ieff
f :=

〈
I0

f

〉
the effective current, by combining (44) for the concentration and potential

fluctuations with (30), we obtain the macroscopic constitutive law

Ieff
f = Aeff∇xC0

Nab+ + Beff∇xφ
0

with the effective parameters given as

Aeff := A
〈
I + ∇yf (y)

〉
Beff := B0

〈
I + ∇yf (y)

〉
.

To derive the macroscopic form of Darcy’s law, we begin by using the closure relation for the electric

potential (44) in (39) to obtain for the slip velocity

V 0
sli p =

ε̃0̃εrζ
0

μ f

(
I + ∇yf

)
∇xφ

0 ∙ τ .

Combining the above result with the mass balance (25) and the momentum equation (32), we obtain

the local Stokes problem formulated in terms of the pair (v0, p1)





μ f 4yyv0 − ∇y p1 = ∇x p0

∇y ∙ v0 = 0 in Y f

v0 ∙ n = 0

v0 ∙ τ =
ε̃0̃εrζ

0

μ f

(
I + ∇yf

)
∇xφ

0 ∙ τ on ∂Y f s

To derive Darcy’s Law, we proceed in a similar fashion to (Lima et al. 2008). This yields

V0
D = 〈v0〉 = −Keff

P ∇x p0 − Keff
E ∇xφ

0 (46)

where the effective conductivities are defined as

Keff
P := 〈κP〉 Keff

E := −
ε̃0̃εrζ

0

μ f

〈
I + ∇yf

〉
(47)
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with the vectorial component of characteristic function κ
j
P , ( j = 1, 2, 3) given by

μ f 4yyκ
j
P − ∇yπ

j
P = −e j ( j = 1, 2, 3)

∇y ∙ κ
j
P = 0 in Y f

κ
j
P = 0 on ∂Y f s

(48)

The macroscopic coefficients Keff
P and Keff

E are nothing but the macroscopic hydraulic and electro-

osmotic conductivities (Moyne and Murad 2006a, Moyne and Murad 2006b). It should be noted that,

since the closure relation for Keff
E contains the zeta potential, by combining the nanoscopic constitutive law

(16) for ζ 0 with (47(b)) we can build-up numerically the dependence Keff
E = Keff

E (C0
Nab+, C0

Hb+). This

result is of utmost importance as it bridges nanoscopic/microscopic and macroscopic results.

Finally, the macroscopic mass conservation can easily be obtained by averaging (31) using the diver-

gence theorem along with boundary condition (38) to obtain

∇x ∙ V0
D = ∇x ∙

(
Keff

E ∇xφ
0 + Keff

P ∇x p0
)

= 0

SUMMARY OF THE THREE SCALE MODEL

We are now ready to formulate our three-scale steady-state problem. Let � be the macroscopic domain

occupied by the kaolinite saturated by an aqueous solution containing four monovalent ions {Na+, H+,

O H−, Cl−}. Given the set of constants {F , ε̃0, ε̃r , μ f , DNa+ , DCl−}, the pair of characteristics functions

{f, κP}, solution of (45) and (48) and {ζ 0, K 0
d } depending on {C0

Hb+ ,C0
Nab+} solution of the nanoscopic

problems (16) and (10), find the macroscopic unknowns {C0
Nab+ , p0, φ0, V0

D} satisfying





∇x ∙ V0
D = 0

V0
D = −Keff

E ∇xφ
0 − Keff

P ∇x p0

R0
∂C0

Nab+

∂t
+ ∇x ∙

(
C0

Nab+V0
D

)
= ∇x ∙

[
Deff

Na+

(
∇xC0

Nab+ + C0
Nab+∇xφ

0
)]

∇x ∙
(

Aeff∇xC0
Nab+ + Beff∇xφ

0
)

= 0

(49)

with the effective parameters {Keff
E , R0, Beff } depending on {C0

Nab+ , C0
Hb+} solution of the microscopic

closure problems

Keff
E = −

ε̃0̃εrζ
0

μ f
〈I + ∇yf〉 Keff

P = 〈κP〉 R = η + 〈K 0
d 〉 f s

Deff
Na+ = DNa+〈I + ∇yf (y)〉 Aeff = F〈I + ∇yf〉 (DNa+ − DCl−) (50)

Beff = F〈I + ∇yf〉

[

(DNa+ + DCl−) CNab+ + DCl−

(

1 −
KW

C2
Hb+

)

CHb+

]

.

In the above three-scale representation of the medium, the geometry of the micropores is described

by the characteristic functions (f, κP), whereas the electro-chemistry at the nanoscale is propagated to

the macroscale through the relation between the effective coefficients {Keff
E ,R0} and the nanoscopic

ζ 0-potential depending on {C0
Nab+ ,C0

Hb+}.

An Acad Bras Cienc (2010) 82 (1)



“main” — 2010/1/27 — 23:18 — page 237 — #15

ELECTRO-OSMOSIS IN KAOLINITE WITH pH-DEPENDENT CHARGE 237

NUMERICAL RESULTS

To illustrate the efficiency of the three-scale model in providing numerical predictions of electrokinetic

remediation of a kaolinite sample, we numerically solve the one-dimensional version of (49)–(50). We

consider a stratified microstructure of the clay composed of parallel particles of face-to-face contact

(Fig. 4). In this idealized form of microstructure, the volume averaging is nothing but the transversal

averaging in the normal direction to the particle surfaces. Furthermore, since flow and ion transport occur

only in the x-direction, we only keep track of the axial components of the fluxes {Jeff
Na+ , Ieff

f , V0
D} and

the tensors {Keff
E , Keff

P , Deff
Na, Aeff , Beff } denoted herein without boldface. In addition, for conciseness

of notation, hereafter we suppress the subscript 0. Under these assumptions, the macroscopic system of

differential equations can be rewritten in the form

T
∂U (x, t)

∂t
+

∂

∂x

(
D

∂U (x, t)
∂x

)
= 0 in �̃ = [0, L] × [0, t] (51)

with the vector of unknowns U := {CNab+, p, φ} and the tensors

Ti j :=

{
−R, if i = j = 1

0, other cases
D :=









0 K ef f
P K ef f

E

Def f
Na+ K ef f

P CNab+

(
K ef f

E +
F Def f

Na+

RT

)
CNab+

A 0 Bef f









The macroscopic system (51) is supplemented by initial and boundary conditions. In particular, for

the concentration we adopt the Danckwerts’ boundary condition at the anode located at (x = 0) along

with the absence of diffusive flux at the cathode (x = L). In addition, we prescribe Dirichlet boundary

conditions for pressure in both sides and given electric current/potential at the anode/cathode, respectively.

We, then, have





p = p at x = 0, L

VDCNab+ − Def f
Na+

(
∂CNab+

∂x
+ CNab+

∂φ

∂x

)

= VDC at x = 0

−Def f
Na+

(
∂CNab+

∂x
+ CNab+

∂φ

∂x

)

= 0 at x = L

(

Aef f ∂CNab+

∂x
+ Bef f ∂φ

∂x

)

= −I0 at x = 0

φ = 0 at x = L

(52)

with C and I0 the sodium concentration in the reservoir and given electric current at the anode (see Fig. 4).

FINITE VOLUME METHOD

The discretization of the macroscopic system of EDP’s (51)–(52) is performed using the finite volume

method (Patankar 1980). The technique consists in decomposing the macroscopic domain into non-

overlapping control volumes, each one surrounding a grid point and integrating the conservative form

of the governing equations (51) in each volume (see Fig. 5).
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Fig. 4 – Stratified arrangement of face-to-face particles.

Fig. 5 – Discretization of the domain.

Denoting xi (i = 0, 1, ...), tn (n = 0, 1, ...) an uniform partition of the spatial and time domains, with

4x := xi − xi−1, 4t := tn − tn−1 the mesh size and time step, respectively, we have

∫ d

e

∫ tn+4t

tn

T
∂U

∂t
dtdx +

∫ tn+4t

tn

∫ d

e

∂

∂x

(
D

∂U

∂x

)
dxdt = 0

Boundary conditions are enforced in a similar manner (Patankar 1980). For instance, the transport

equation (49(c)) is integrated over the half control volume adjacent to the boundary. In particular, when

applying this procedure to the non-linear Danckwerts’ boundary condition for the sodium transport (52(b)),

we obtain

−
∫ i=1

0

∫ t+4t

t
R

∂CNab+

∂t
dtdx +

∫ t+4t

t

∫ i

0

d

dx

(
Def f

Na+

dCNab+

dx
+ αCNab+

)
dxdt

= −
∫ i=1

0
Rt+4t(Ct+4t

Nab+ − Ct
Nab+)dx +

∫ t+4t

t
[(Def f

Na+

dCNab+

dx
+ αCNab+)(i) − VDC]dt = 0

with

α = K ef f
P

∂p

∂x
+

(

K ef f
E +

F Def f
Na+

RT

)
∂φ

∂x

We adopt the classical central difference scheme for the spatial derivatives combined with a linear

interpolation in time. Denoting αi the nodal values of α, it is worth noting that the discrete version of the

non-linear boundary condition can be solved for the sodium concentration on the boundary. This yields

Ct+4t
Nab+(0) =

[
V C −

(
1 + 0.5α

t+4t
i

)
Ct+4t

Nab+(1) − 0.5Rt+4tCt
Nab+(0)4x2/4t

]

(
0.5α

t+4t
i − 1 − 0.5Rt+4t4x2/4t

) .

The solution of the above non-linear equation is obtained using Newton’s method.
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NUMERICAL EXAMPLES

In the numerical simulation of the desalination of a clay sample by elecrokinetics, we adopt the values

DNa+ = 1.334 × 10−9m2/s, p = 105 Pa, C = 1 mol/m3, I0 = 1A/m2 along with an initial concentration

C0
Nab+ = 10 mol/m3, time step 1t = 1s and an uniform mesh of 500 grid points.

In Figure 6 we display the evolution of the macroscopic unknowns {CNab+ , p, φ} along with the

nanoscopic parameter ζ for pH = 8.0. In this basic regime, the ζ -potential is negative, with, magnitude

decreasing as the clean-up process evolves (recall Fig. 3). As ζ < 0 the electro-osmotic flow occurs in

the same direction of the applied electrical field and leads to gradual desalination of the clay sample, as

one may observe in Figure 6(a). Figure 6(b) shows the evolution of the distribution of the electric po-

tential. Since charge conservation (49(d)) gives rise to a strong coupling between the concentration and

electric potential distributions, the non-linear profile of the sodium concentration also induces a non-

linear behavior of the electric potential. As t → ∞, the electric potential profiles converge to the linear

one except in the vicinity of the cathode. The evolution of the pressure is displayed in Figure 6(c). By

invoking the mass balance (49(a)), the Darcy velocity is constant and, consequently, a non-linear pres-

sure behavior arises in order to counterbalance the gradient of electric potential.

(a) (b)

(c) (d)

Fig. 6 – Results of the numerical simulations for pH = 8.0.
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(a) (b)

(c) (d)

Fig. 7 – Results of the numerical simulations for pH = 6.0.

Finally, in Figure 7, we display the same plots for the lower value pH = 6. We may particularly

observe, substantial increase in the electric potential towards the anode, which is due to the decrease in the

electrical-conductivity B in (20) for a lower pH . To maintain the fixed current Io at the anode, φ has to

raise in order to increase the electro-osmotic driving force to counter-balance the decrease in B. In addition,

we may observe a more efficient clean-up procedure in Figure 7(a) compared to Figure 6(a).

CONCLUSION

In this paper we built-up a new three-scale model to describe ion transport in Kaolinite clays, includ-

ing pH influence on adsorption. Effective governing equations were derived by double averaging the

nanoscopic behavior of the medium. Among the homogenized results, we highlight the isotherm adsorp-

tion for Na+ concentration, which was rigorously reconstructed from the electrical double layer behav-

ior at the nanoscale. Numerical simulations of a transient electrokinetic remediation experiment were

performed to validate the three-scale theory. The model proposed herein consists of a first multiscale

attempt at capturing the influence of pH on ion adsorption in clays.
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RESUMO

Neste artigo propomos um modelo em três escalas para descrever o acoplamento entre o fluxo eletroosmótico e o

transporte de íons incluindo fenômenos de adsorção em uma caulinita. A argila é caracterizada por três escalas

nano/micro e macroscópica. A escala microscópica é constituída por micro-poros saturados por uma solução aquosa

contendo quatro íons monovalentes e partículas sólidas carregadas eletricamente circundadas por uma dupla camada

elétrica fina. O movimento dos íons é governado pelas equações de Nernst-Planck e a influência da dupla camada

sobre o fluxo aquoso é modelada por uma condição de contorno de deslizamento da componente tangencial do

campo de velocidade (condição de Helmholtz-Smoluchowski). Além disso, uma condição de adsorção na interface

fluido-sólido para os íons Na+ é postulada capturando a retenção do sódio na dupla camada elétrica. O modelo em

duas escalas nano/micro incluindo a adsorção do sal e a condição de deslizamento da velocidade é homogeneizado

levando a derivação das equações macroscópicas na escala de Darcy. Um dos aspectos inovadores do modelo em três

escalas é a reconstrução da lei constitutiva para o coeficiente de partição que governa a adsorção do Na+ na dupla

camada elétrica. Para ilustrar as potencialidades do modelo em três escalas na simulação da eletroremediação de

solos argilosos, o modelo macroscópico é discretizado utilizando o método de volumes finitos no intuito de simular

a dessalinização de uma amostra de caulinita por técnica de eletrocinética.

Palavras-chave: dupla camada elétrica, eletro-osmose, homogeneização, caulinita, Nernst-Planck, Poisson-Boltz-

mann.
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