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ABSTRACT

A topological group G has the Approximate Fixed Point (AFP) property on a bounded convex subset C of

a locally convex space if every continuous affine action of G on C admits a net (xi), xi ∈ C, such that

xi−gxi −→ 0 for all g ∈ G. In this work, we study the relationship between this property and amenability.

Key words: Amenable groups, approximate fixed point property, Følner property, Reiter property.

INTRODUCTION

One of the most useful known characterizations of amenability is stated in terms of a fixed point property. A

classical theorem of (Day 1961) says that a topological groupG is amenable if and only if every continuous

affine action ofG on a compact convex subset C of a locally convex space has a fixed point, that is, a point

x ∈ C with g ·x = x for all g ∈ G. This result generalizes earlier theorems of (Kakutani 1938) and (Markov

1936) obtained for abelian acting groups.

At the same time, an active branch of current research is devoted to the existence of approximate fixed

points for single maps. Basically, given a bounded, closed convex set C and a map f : C −→ C, one wants

to find a sequence (xn) ⊂ C such that xn − f(xn) −→ 0. A sequence with this property will be called an

approximate fixed point sequence.

The main motivation for this topic is purely mathematical and comes from several instances of the

failure of the fixed point property in convex sets that are no longer assumed to be compact, cf. (Dobrowol-

ski and Marciszewski 1997, Edelstein and Kok-Keong 1994, Floret 1980, Klee 1955, Nowak 1979) and

references therein. One of the most emblematic results on this matter states that if C is a non-compact,
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bounded, closed convex subset of a normed space, then there exists a Lipschitz map f : C −→ C such

that infx∈C ‖x− f(x)‖ > 0 (Lin and Sternfeld 1985). Notice in this case that there is no approximate fixed

point sequence for f . Previous results of topological flavour were discovered by many authors, including

(Klee 1955) who has characterized the fixed point property in terms of compactness in the framework of

metrizable locally convex spaces.

Both results give rise to the natural question whether a given space without the fixed point property

might still have the approximate fixed point property. The first thoughts on this subject were developed

in (Barroso 2009, Barroso and Lin 2010, Barroso et al. 2012, 2013) in the context of weak topologies.

Another mathematical motivation for the study of the approximate fixed point property is the following

open question.

Question 0.1. LetX be a Hausdorff locally convex space. AssumeC ⊂ X is a sequentially compact convex

set and f : C −→ C is a sequentially continuous map. Does f have a fixed point?

So far, the best answers for this question were delivered in (Barroso et al. 2012, 2013). Let us just

summarize the results.

Theorem 0.2 (Theorem 2.1, Proposition 2.5(i) in (Barroso et al. 2012, 2013)). LetX be a topological vector

space, C ⊂ X a nonempty convex set, and let f : C −→ C be a map.

1. If C is bounded, f(C) ⊂ C and f is affine, then f has an approximate fixed point sequence.

2. If X is locally convex and f is sequentially continuous with totally bounded range, then 0 ∈
{x− f(x) : x ∈ C}. And indeed, f has a fixed point provided that X is metrizable.

3. If C is bounded and f is τ -to-σ(X,Z) sequentially continuous, then 0 ∈ {x− f(x) : x ∈ C}σ(X,Z)
,

where τ is the original topology ofX and Z is a subspace of the topological dualX?. And, moreover,

f has a σ(X,Z)-approximate fixed point sequence provided that Z is separable under the strong

topology induced by X .

The idea of approximate fixed points is an old one. Apparently the first result on this kind was ex-

ploited in (Scarf 1967), where a constructive method for computing fixed points of continuous mappings

of a simplex into itself was described. Other important works along these lines can be found in Hazewinkel

and van de Vel (1978), Hadžić (1996), Idzik (1988), Park (1972). Approximate fixed point property has a

lot of applications in many interesting problems. In (Kalenda 2011) it is proved that a Banach space has

the weak-approximate fixed point property if and only if it does not contain any isomorphic copy of `1. As

another instance, it can be used to study the existence of limiting-weak solutions for differential equations

in reflexive Banach spaces (Barroso 2009).

In this note, we study the existence of common approximate fixed points for a set of transformations

forming a topological group. Not surprisingly, the approximate fixed point property for an acting group G

is also closely related to amenability of G, however, the relationship appears to be more complex.

There is an extremely broad variety of known definitions of amenability of a topological group, which

are typically equivalent in the context of locally compact groups yet may diverge beyond this class. One

would expect the approximate fixed point property (or rather “properties,” for they depend on the class of

convex sets allowed) to provide a new definition of amenability for some class of groups, and delineate a

new class of topological groups in more general contexts. This indeed turns out to be the case.
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We show that a discrete group G is amenable if and only if every continuous affine action of G on a

bounded convex subsetC of a locally convex space (LCS)X admits approximate fixed points. For a locally

compact group, a similar result holds if we consider actions on bounded convex sets C which are complete

in the additive uniformity, while in general we can only prove that G admits weakly approximate fixed

points. This criterion of amenability is no longer true in the more general case of a Polish group, even if

amenability of Polish groups can be expressed in terms of the approximate fixed point property on bounded

convex subsets of the Hilbert space.

We view our investigation as only the first step in this direction, and so we close the article with a

discussion of open problems for further research.

1 - AMENABILITY

Here is a brief reminder of some facts about amenable topological groups. For a more detailed treatment,

see e.g. (Paterson 1988). All the topologies considered here are assumed to be Hausdorff.

LetG be a topological group. The right uniform structure onG has as basic entourages of the diagonal

the sets of the form UV = {(g, h) ∈ G × G | hg−1 ∈ V }, where V is a neighbourhood of the identity

e in G. This structure is invariant under right translations. Accordingly, a function f : G −→ R is right

uniformly continuous if for all ε > 0, there exists a neighbourhood V of e inG such that xy−1 ∈ V implies

|f(x) − f(y)| < ε for every x, y ∈ G. Let RUCB(G) denote the space of all right uniformly continuous

functions equipped with the uniform norm. The group G acts on RUCB(G) on the left continuously by

isometries: for all g ∈ G and f ∈ RUCB(G), g · f = gf where gf(x) = f(g−1x) for all x ∈ G.

Definition 1.1. A topological group G is amenable if it admits an invariant mean on RUCB(G), that is, a

positive linear functional m with m(1) = 1, invariant under the left translations.

Examples of such groups include finite groups, solvable topological groups (including nilpotent, in

particular abelian topological groups) and compact groups. Here are some more examples:

1. The unitary group U(`2), equipped with the strong operator topology (de la Harpe 1973).

2. The infinite symmetric group S∞ with its unique Polish topology.

3. The group J (k) of all formal power series in a variable x that have the form f(x) = x + α1x
2 +

α2x
3 + ...., αn ∈ k, where k is a commutative unital ring (Babenko and Bogatyi 2011).

Let us also mention some examples of non-amenable groups:

1. The free discrete group F2 of two generators. More generally, every locally compact group containing

F2 as a closed subgroup.

2. The unitary group U(`2), with the uniform operator topology (de la Harpe 1979).

3. The group Aut(X,µ) of all measure-preserving automorphisms of a standard Borel measure space

(X,µ), with the uniform topology, i.e. the topology determined by the metric d(τ, σ) = µ{x ∈ X :

τ(x) 6= σ(x)} (Giordano and Pestov 2002).

The following is one of the main criteria of amenability in the locally compact case.
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Theorem 1.2 (Følner’s condition). Let G be a locally compact group and denote λ the left invariant Haar

measure. Then G is amenable if and only if G satisfies the Følner condition: for every compact set F ⊆ G

and ε > 0, there is a Borel set U ⊆ G of positive finite Haar measure λ(U) such that
λ(xU4U)

λ(U) < ε for

each x ∈ F .

Recall that aPolish group is a topological groupwhose topology is Polish, i.e., separable and completely

metrizable.

Proposition 1.3 (See e.g. (Al-Gadid et al. 2011), Proposition 3.7). A Polish groupG is amenable if and only

if every continuous affine action of G on a convex, compact and metrizable subset K of a locally convex

space X admits a fixed point.

For a most interesting recent survey about the history of amenable groups, see (Grigorchuk and de la

Harpe in press).

2 - GROUPS WITH APPROXIMATE FIXED POINT PROPERTY

Definition 2.1. Let C be a convex bounded subset of a topological vector space X . Say that a topological

group G has the approximate fixed point (AFP) property on C if every continuous affine action of G on C

admits an approximate fixed point net, that is, a net (xi) ⊆ C such that for every g ∈ G, xi − gxi −→ 0.

We will analyse the AFP property of various classes of amenable topological groups.

2.1 - CASE OF DISCRETE GROUPS

Theorem 2.2. The following properties are equivalent for a discrete group G:

1. G is amenable,

2. G has the AFP property on every convex bounded subset of a locally convex space.

Proof. (1)⇒ (2). Let G a discrete amenable group acting by continuous affine maps on a bounded convex

subset C of a locally convex space X . Choose a Følner’s (Φi)i∈I net, that is, a net of finite subsets of G

such that

|gΦi 4 Φi|
|Φi|

−→ 0 ∀g ∈ G.
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Now, let γ ∈ G, fix x ∈ C and define xi =
1

|Φi|
∑
g∈Φi

gx. Since C is convex, xi ∈ C for all i ∈ I . Notice

that |Φi \ γΦi| = |γΦi \ Φi| = 1
2 |γΦi4Φi| for all i ∈ I . Therefore we have

xi − γxi =
1

|Φi|

[ ∑
g∈Φi

gx−
∑
g∈Φi

γgx

]

=
1

|Φi|

[ ∑
g∈Φi

gx−
∑

h∈γΦi

hx

]

=
1

|Φi|

[ ∑
g∈(Φi\γΦi)

gx−
∑

g∈(γΦi\Φi)

gx

]

=
|γΦi4Φi|
2|Φi|

 1

|Φi \ γΦi|
∑

g∈(Φi\γΦi)

gx− 1

|γΦi \ Φi|
∑

g∈(γΦi\Φi)

gx


Thus xi − γxi ∈

|γΦi4Φi|
2|Φi|

(C − C) and hence xi − γxi −→ 0 since C is bounded.

(2)⇒ (1). Let G be a discrete group acting continuously and by affine transformations on a nonempty

compact and convex set K in a locally convex space X . By hypothesis, there is a net (xi) ⊆ K such that

∀g ∈ G, xi − gxi −→ 0. By compactness of K, this net has accumulation points in K. Since ∀ g ∈
G, xi − gxi −→ 0, this insures invariance of accumulation points and shows the existence of a fixed point

inK. Therefore G is an amenable group by Day’s fixed point theorem mentioned in the Introduction.

2.2 - CASE OF LOCALLY COMPACT GROUPS

Recall from (Bourbaki 1963) the following notion of integration of functions with range in a locally

convex space.

Let F be a locally convex vector space on R or C. F ′ denotes the dual space of F and F ′∗ the algebraic

dual of F ′. We identify as usual F (seen as a vector space without topology) with a subspace of F ′∗ by

associating to any z ∈ F the linear form F ′ 3 z′ 7−→ 〈z, z′〉 ∈ R.
Let T be a locally compact space and let µ a positive measure on T . A map f : T −→ F is essentially

µ-integrable if for every element z′ ∈ F ′, 〈z′, f〉 is essentially µ-integrable. If f : T −→ F is essentially

µ-integrable, then z′ 7−→
∫
T
〈z′, f〉 dµ is a linear map on F ′, i.e. an element of F ′∗. The integral of f is

the element of F ′∗ denoted

∫
T
f dµ and defined by the condition: 〈z′,

∫
T
f dµ〉 =

∫
T
〈z′, f〉 dµ for every

z′ ∈ F ′.

Note that, in general we don’t have

∫
T
f dµ ∈ F . But we have the following.
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Proposition 2.3 ((Bourbaki 1963), chap. 3, Proposition 7). Let T be a locally compact space, E a locally

convex space and f : T −→ E a function with compact support. If f(T ) is contained in a complete (with

regard to the additive uniformity) convex subset of E, then

∫
T
f dµ ∈ E.

Theorem 2.4. The following are equivalent for a locally compact group G:

1. G is amenable,

2. G has the AFP property on every complete, convex, and bounded subset of a locally convex space.

Proof. (1) ⇒ (2). Let G be a locally compact amenable group acting continuously by affine maps on a

complete, bounded, convex subset C of a locally convex space X . Again, select a Følner net (Fi)i∈I of

compact subsets of G such that
λ(gFi4Fi)

λ(Fi)
−→ 0 ∀g ∈ G. Fix x ∈ C and let ηx : G 3 g 7−→ gx ∈ C be

the corresponding orbit map. Define xi =
1

λ(Fi)

∫
Fi

ηx(g) dλ(g). By the above, this is an element of C; the

barycenter of the push-forward measure (ηx)∗(λ|Fi
) on X . We have, just like in the discrete case:

xi − γxi =
1

λ(Fi)

[∫
Fi

ηx(g) dλ(g)− γ

∫
Fi

ηx(g) dλ(g)

]

=
1

λ(Fi)

[∫
Fi

ηx(g) dλ(g)−
∫
Fi

ηx(γg) dλ(g)

]

=
1

λ(Fi)

[∫
Fi

[ηx(g)− ηx(γg)] dλ(g)

]

=
1

λ(Fi)

[∫
γFi4Fi

ηx(v) dλ(v)

]
.

Now, let q be any continuous seminorm on C. We have:

q(xi − γxi) ≤
λ(γFi 4 Fi)

λ(Fi)
K

whereK = sup
v∈G

q ◦ ηx(v) < ∞ since C is bounded. Thus xi − γxi −→ 0.

(2)⇒ (1). Same argument as in the case of discrete groups.

The assumption of completeness of C does not look natural in the context of approximate fixed points,

but we do not know if it can be removed. It depends on the answer to the following.

Question 2.5. Let f be an affine homeomorphism of a bounded convex subset C of a locally convex space

X . Can f be extended to a continuous map (hence, a homeomorphism) of the closure of C in X?
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Nevertheless, we can prove the following.

Theorem 2.6. Every amenable locally compact group G has a weak approximate fixed point property on

each bounded convex subset C of a locally convex space X .

Proof. In the notation of the proof of Theorem 2.4, let µi = (ηx)∗(λ|Fi
) denote the push-forward of the

measure λi = λ � Fi along the orbit map ηx : G 3 g 7−→ gx ∈ C. Let xi be the barycenter of µi. This time,

xi need not belong to C itself, but will belong to the completion Ĉ, of C (the closure of C in the locally

convex vector space completion X̂).

For every g ∈ G, denote zgi the barycenter of the measure g.µi = (ηx)∗(gλi). Just like in the proof of

Theorem 2.4, for every g we have xi − zgi → 0.

Now select a net νj of measures with finite support on G, converging to λi in the vague topology

(Bourbaki 1963). Denote yj the barycenter of the push-forward measure (ηx)∗(νj). Then yj ⇒ xi in the

vague topology on the space of finite measures on the compact space Fi.x. Clearly, yj ∈ C, and so g · yj is
well-defined and g · yj ⇒ zgi for every g ∈ Φ. It follows that g · yj − yj weakly converges to 0 for every

g ∈ Φ.

Remark 2.7. Clearly the weak AFP property on each bounded convex subset C implies amenability ofG as

well. Recall that a topological group G has the weak AFP property on C if every weakly continuous affine

action of G on C admits an approximate fixed point net.

2.3 - CASE OF POLISH GROUPS

The above criteria do not generalize beyond the locally compact case in the ways one might expect: not

every amenable non-locally compact Polish group has the AFP property, even on a bounded convex subset

of a Banach space.

Proposition 2.8. The infinite symmetric group S∞ equipped with its natural Polish topology does not have

the AFP property on closed convex bounded subsets of `1.

If we think of S∞ as the group of all self-bijections of the natural numbers N, then the natural (and

only) Polish topology on S∞ is induced from the embedding of S∞ into the Tychonoff power NN, where N
carried the discrete topology.

We will use the following well-known criterion of amenability for locally compact groups.

Theorem 2.9 (Reiter’s condition). Let p be any real number with 1 ≤ p < ∞. A locally compact group G

is amenable if and only if for any compact set C ⊆ G and ε > 0, there exists f ∈ Lp(G), f ≥ 0, ‖f‖p = 1,

such that: ‖g · f − f‖ < ε for all g ∈ C.

Proof of Proposition 2.8. Denote prob(N) the set of all Borel probability measures onN, in other words, the
set of positive functions b : N −→ [0, 1] such that

∑
n∈N

b(n) = 1. This is the intersection of the unit sphere

of `1 with the cone of positive elements, a closed convex bounded subset of `1. The Polish group S∞ acts

canonically on `1 by permuting the coordinates:

S∞ × `1(N) 3 (σ, (xn)n) 7−→ σ · (xn)n = (xσ−1(n))n ∈ `1(N).
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Clearly, prob(N) is invariant and the restricted action is affine and continuous. We will show that the action

of S∞ on prob(N) admits no approximate fixed point sequence.
Assume the contrary. Make the free group F2 act on itself by left multiplication and identify F2 with

N. In this way we embed F2 into S∞ as a closed discrete subgroup. This means that the action of F2 by left

regular representation on prob(N) ∼= prob(F2) also has almost fixed points, and `1(F2), with regard to the

left regular representation of F2, has almost invariant vectors. But this is the Reiter’s condition (p = 1) for

F2, a contradiction with non-amenability of this group.

However, it is still possible to characterize amenability of Polish groups in terms of the AFP property.

Theorem 2.10. The following are equivalent for a Polish group G:

1. G is amenable,

2. G has the AFP property on every bounded, closed and convex subset of the Hilbert space.

Proof. (1)⇒ (2). It is enough to show that a norm-continuous affine action ofG on a bounded closed convex

subset C of `2 is continuous with regard to the weak topology, because then there will be a fixed point in C

by Day’s theorem.

Let x ∈ C and g ∈ G be any, and let V be a weak neighbourhood of g.x inC. The weak topology on the

weakly compact set C coincides with the σ(spanC, `2) topology, hence one can choose x1, x2, ..., xn ∈ C

and ε > 0 so that y ∈ V whenever |〈xi, y − gx〉| < ε for all i.

Denote K the diameter of C. Because the action is norm-continuous, we can find U 3 e in G so that∥∥u−1xi − xi
∥∥ < ε/2K for all i. The set Ug is a neighbourhood of g in G.

As a weak neighbourhood of x, take the setW formed by all ζ ∈ C with |〈g−1xi, ζ −x〉| < ε/2 for all

i. Equivalently, the condition on ζ can be stated |〈xi, gζ − gx〉| < ε/2 for all i.

If now u ∈ U and ζ ∈ W , one has

|〈xi, (ug) · ζ − gx〉| =
∣∣〈u−1xi, gζ〉 − 〈xi, gx〉

∣∣
=

∣∣〈u−1xi, gζ〉 − 〈xi, gζ〉
∣∣+ |〈xi, gζ〉 − 〈xi, gx〉|

≤ ‖uxi − xi‖ ·K +
ε

2
= ε.

This shows that (ug) · ζ ∈ V , and so the action of G on C is continuous with regard to the weak

topology.

(2) ⇒ (1). Suppose that G acts continuously and by affine transformations on a compact convex and

metrizable subset Q of a LCS E. If C(Q) is equipped with the usual norm topology, then G acts contin-

uously by affine transformations on the subspace A(Q) of C(Q) consisting of affine continuous functions

on Q. Since Q is a metrizable compact set, the space C(Q) is separable, so is the space A(Q). Fix a dense

countable subgroup H of G, and let F = {fn : n ∈ N} be a dense subset of the closed unit ball of A(Q)

which is H-invariant. The map T : Q 3 x 7−→ ( 1nfn(x)) ∈ `2 is an affine homeomorphism of Q onto a

convex compact subset of `2. The subgroupH acts continuously and by affine transformations on the affine

topological copy T (Q) ofQ by, the obvious rule h ·T (x) = T (h ·x). The action ofH extends by continuity
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to a continuous affine action ofG on T (Q). By hypothesis,G admits an approximative fixed point sequence

in T (Q), and every accumulation point of this sequence is a fixed point since Q is compact. Therefore G is

amenable.

3 - DISCUSSION AND CONCLUSION

3.1 - APPROXIMATELY FIXED SEQUENCES

As we have already noted, we do not know if every locally compact amenable group has the AFP

property on all convex bounded subsets of locally convex spaces. Another interesting problem is to deter-

mine when does an acting group possess not merely an approximately fixed net, but an approximate fixed

sequence.

Recall that a topological groupG is σ-compact if it is a union of countably many compact subsets. It is

easy to see that if an amenable locally compact group G is σ-compact, then it admits an approximate fixed

sequence for every continuous action by affine maps on a closed bounded convex set.

Question 3.1. LetG be a metrizable separable group acting continuously and affinely on a convex bounded

subset C of a metrizable and locally convex space. If the action has an approximate fixed net, does there

necessarily exist an approximate fixed sequence?

This is the case, for example if G is the union of a countable chain of amenable locally compact (in

particular, compact) subgroups, and the convex set C is complete.

Recall in this connection that amenability (and thus Day’s fixed point property) is preserved by passing

to the completion of a topological group. At the same time, theAFP property is not preserved by completions.

Indeed, the group Sfin
∞ of all permutations of integers with finite support is amenable as a discrete group,

and so, equipped with any group topology, will have the AFP property on every bounded convex subset of

a locally convex space. However, its completion with regard to the pointwise topology is the Polish group

S∞ which, as we have seen, fails the AFP property on a bounded convex subset of `1.

Question 3.2. Does every amenable group whose left and right uniformities are equivalent (a SIN group)

have the AFP property on complete convex sets?

3.2 - DISTAL ACTIONS

LetG be a topological group acting by homeomorphisms on a compact setQ. The flow (G,Q) is called

distal if whenever limα sα ·x = limα sα ·y for some net sα inG, then x = y. A particular class of distal flows

is given by equicontinuous flows, for which the collection of all maps x 7→ g · x forms an equicontinuous

family on the compact space Q. We have the following fixed point theorem:

Theorem 3.3 (Hahn 1967). If a compact affine flow (G,Q) is distal, then there is a G-fixed point.

An earlier result by (Kakutani 1938) established the same for the class of equicontinuous flows.

Question 3.4. Is there any approximate fixed point analogue of the above results for distal or equicontinuous

actions by a topological group on a (non-compact) bounded convex set Q?
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3.3 - NON-AFFINE MAPS

Historically, Day’s theorem (and before that, the theorem of Markov and Kakutani) was inspired by

the classical Brouwer fixed point theorem (Brouwer 1911) and its later more general versions, first for

Banach spaces (Schauder 1930) and later for locally convex linear Hausdorff topological spaces (Tychonoff

1935). (Recently it was extended to topological vector spaces (Cauty 2001)). The Tychonoff fixed point

theorem states the following. Let C be a nonvoid compact convex subset of a locally convex space and let

f : C −→ C be a continuous map. Then f has a fixed point in C. The map f is not assumed to be affine

here.

However, for a common fixed point of more than one function, the situation is completely different.

Papers (Boyce 1969) and (Huneke 1969) contain independent examples of two commuting maps f, g :

[0, 1] −→ [0, 1] without a common fixed point. Hence if a common fixed point theorem were to hold, there

should be further restrictions on the nature of transformations beyond amenability, and for Day’s theorem,

this restriction is that the transformations are affine.

The Tychonoff fixed point theorem is being extended in the context of approximate fixed points. For

instance, here is one recent elegant result.

Theorem 3.5 (Kalenda 2011). Let X be a Banach space. Then every nonempty, bounded, closed, convex

subset C ⊆ X has the weak AFP property with regard to each continuous map f : C −→ C if and only if

X does not contains an isomorphic copy of `1.

We do not know if a similar program can be pursued for topological groups.

Question 3.6. Does there exist a non-trivial topological group G which has the approximate fixed point

property with regard to every continuous action (not necessarily affine) on a bounded, closed convex subset

of a locally convex space? of a Banach space?

Question 3.7. The same, for the weak AFP property.

Natural candidates are the extremely amenable groups, see e.g. Pestov (2006). A topological group is

extremely amenable if every continuous action of G on a compact spaceK has a common fixed point. The

action does not have to be affine, andK is not supposed to be convex. This is a very strong nonlinear fixed

point property.

Some of the most basic examples of extremely amenable Polish groups are:

1. The unitary group U(`2) with the strong operator topology (Gromov and Milman 1983).

2. The group Aut (Q) of order-preserving bijections of the rational numbers with the topology induced

from S∞ (Pestov 1998).

3. The group Aut (X,µ) of measure preserving transformations of a standard Lebesgue measure space

equipped with the weak topology. (Giordano and Pestov 2002).

However, at least the group Aut (Q) does not have the AFP property with regard to continuous actions

on the Hilbert space. To see this, one can use the same construction as in Proposition 2.8, together with the

well-known fact that Aut (Q) contains a closed discrete copy of F2.

An Acad Bras Cienc (2017) 89 (1)



ON TOPOLOGICAL GROUPS WITH AN APPROXIMATE FIXED POINT PROPERTY 29

ACKNOWLEDGMENTS

Cleon S. Barroso is currently as a visiting researcher scholar at the Texas A&M University. He takes the

opportunity to express his gratitude to Prof. Thomas Schlumprecht for his support and friendship. Also,

he acknowledges Financial Support form Coordenação de Aperfeiçoamento de Pessoal de Nível Supe-

rior (CAPES) by the Science Without Bordes Program, PDE 232883/2014-9. Brice R. Mbombo was sup-

ported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) postdoctoral grant, processo

12/20084-1. Vladimir G. Pestov is a Special Visiting Researcher of the program Science Without Borders

of CAPES, processo 085/2012.

REFERENCES

AL-GADID Y, MBOMBO B AND PESTOV V. 2011. Sur les espaces test pour la moyennabilité. CR Math Acad Sci Soc R Can

33: 65-77.

BABENKO I AND BOGATYI SA. 2011. The amenability of the substitution group of formal power series. Izv Math 75: 239-252.

BARROSO CS. 2009. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete Cont

Dyn Syst 25: 467-479.

BARROSO CS AND LIN PK. 2010. On the weak approximate fixed point property. J Math Anal Appl 365: 171-175.

BARROSO CS, KALENDA OFK AND LIN PK. 2012. On the approximate fixed point property in abstract spaces. Math Z 271:

1271-1285.

BARROSO CS, KALENDA OFK AND REBOUÇAS MP. 2013. Optimal approximate fixed point result in locally convex spaces.

J Math Appl 401: 1-8.

BOURBAKI N. 1963. Intégration. Hermann, Paris.

BOYCE WM. 1969. Commuting functions with no common fixed point. Trans Amer Math Soc 137: 77-92.

BROUWER LEJ. 1911. Uber Abbildung von Mannigfaltigkeiten. Math Ann 71: 97-115.

CAUTY R. 2001. Solution du problème de point fixe de Schauder. Fund Math 170: 231-246.

DAY M. 1961. Fixed-point theorems for compact sets. Illinois J Math 5: 585-590.

DE LA HARPE P. 1973. Moyennabilité de quelques groupes topologiques de dimension infinie. CR Acad Sci Paris, Sér A 277:

1037-1040.

DE LA HARPE P. 1979. Moyennabilité du groupe unitaire et propriété de Schwartz des algèbres de von Neumann. Lecture Notes

in Math 725: 220-227.

DOBROWOLSKI T AND MARCISZEWSKI W. 1997. Rays and the fixed point property in noncompact spaces. Tsukuba J Math

21: 97-112.

EDELSTEIN M AND KOK-KEONG T. 1994. Fixed point theorems for affine operators on vector spaces. J Math Anal Appl 181:

181-187.

FLORET K. 1980. Weakly Compact Sets. Lecture Notes in Math. 801, Springer-Verlag, Berlin? Heidelberg ? New York.

GIORDANO T AND PESTOV V. 2002. Some extremely amenable groups. CR Acad Sci Paris Sér I 4: 273-278.

GRIGORCHUK R AND DE LA HARPE P. IN PRESS. Amenability and Ergodic Properties of Topological groups: From

Bogolyubov onwards.

GROMOVMANDMILMAN VD. 1983. A topological application of the isoperimetric inequality. Amer J Math 105(4): 843-854.

HADŽIĆ O. 1996. Almost fixed point and best approximations theorems inH-spaces. Bull Austral Math Soc 53: 447-454.

HAHN F. 1967. A fixed-point theorem. Math Systems Theory 1: 55-57.

HAZEWINKEL M AND VAN DE VEL M. 1978. On almost-fixed-point theory. Canad J Math 30: 673-699.

HUNEKE JP. 1969. On common fixed points of commuting continuous functions on an interval. Trans Amer Math Soc 139:

371-381.

IDZIK A. 1988. Almost fixed point theorems. Proc Amer Math Soc 104: 779-784.

KAKUTANI S. 1938. Fixed-point theorems concerning bicompact convex sets. Proc Imperial Acad Japan 14: 27-31.

KALENDA OFK. 2011. Spaces not containing `1 have weak approximate fixed point property. J Math Anal Appl 373: 134-137.

KLEE VL. 1955. Some topological properties of convex sets. Trans Amer Math Soc 78: 30-45.

LIN PK AND STERNFELD Y. 1985. Convex sets with the Lipschitz fixed point property are compact. Proc Amer Math Soc 93:

33-39.

An Acad Bras Cienc (2017) 89 (1)



30 CLEON S. BARROSO, BRICE R. MBOMBO and VLADIMIR G. PESTOV

MARKOV A. 1936. Quelques théorèmes sur les ensembles abéliens. Dokl Akad Nauk SSSR (NS:) 10: 311-314.

NOWAK B. 1979. On the Lipschitzian retraction of the unit ball in infinite dimensional Banach spaces onto its boundary. Bull

Acad Polon Sci Sr Sci Math 27: 861-864.

PARK S. 1972. Almost fixed points of multimaps having totally bounded ranges. Nonlinear Anal 51: 1-9.

PATERSON AT. 1988. Amenability. University Math. Surveys and Monographs 29, Amer Math Soc, Providence, RI.

PESTOV V. 1998. On free actions, minimal flows, and a problem by Ellis. Trans of the American Mathematical Society 350:

4149-4165.

PESTOV V. 2006. Dynamics of Infinite-dimensional Groups: The Ramsey-Dvoretzky-Milman phenomenon. University Lecture

Series, vol. 40, Amer Math Soc, Providence, RI.

SCARF H. 1967. The approximation of fixed points of a continuous mapping. SIAM J Applied Math 15: 1328-1343.

SCHAUDER J. 1930. Der Fixpunktsatz in Functionalraumen. Studia Math 02: 171-180.

TYCHONOFF A. 1935. Ein Fixpunktsatz. Math Ann 03: 767-776.

An Acad Bras Cienc (2017) 89 (1)


