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Abstract: Patterns of beta diversity of plankton communities in rivers have been 
mainly determined by hydrological factors that alter the dispersion and composition of 
species and traits. Rotifers in the Guamá River (eastern Amazonian River) were sampled 
(monthly between October 2017 and June 2019) to analyze the temporal variation of 
taxonomic and functional beta diversity and its partitions (turnover and nestedness) as 
well as the effects of temporal, environmental, and seasonal dissimilarities. Taxonomic 
turnover and functional nestedness over time were observed as well as functional 
homogenization, which was arguably due to the hypereutrophic condition of the river. 
There were no seasonal differences in taxonomic and functional beta diversity probably 
due the low environmental dissimilarity. This study demonstrated that this Guamá River 
stretch presented low environmental dissimilarity and hypereutrophic waters, which 
benefi ted the establishment of a community of species with high taxonomic turnover 
over time, but with low functional dissimilarity and loss of some functions related to the 
functional traits evaluated in the ecosystem. It is important to point out that temporal 
studies should evaluate both taxonomic and functional aspects of communities, mainly 
because the effect of environmental changes may be more noticeable at the functional 
level of communities. 

Key words: Environmental dissimilarity, functional traits, beta diversity, plankton, lotic 
environment.

INTRODUCTION
One of the main issues in ecology is 
understanding the determining factors and 
mechanisms of biodiversity (Villéger et al. 2013). 
It is recognized that the composition of species 
alone is not enough to understand the structure 
of assemblies (Swenson et al. 2012) and their 
effects on the functioning of the ecosystem 
without considering the functional facet of 
biodiversity (Díaz et al. 2007, Hillebrand & 
Matthiessen 2009). Function-based approaches 
and functional traits are increasingly being used 

as an alternative to traditional approaches to 
study biodiversity (Swenson et al. 2012).

Measures that assess biodiversity and that 
incorporate the functional traits of species help 
to understand the niche, its needs and its effects 
on the environment (Barnett et al. 2007, McGill et 
al. 2006, Rosado et al. 2015, Visconti et al. 2018). 
Functional traits are defi ned as any measurable 
individual-related morphological, physiological, 
or phenological characteristics from the c ellular 
level to a complete organism (Violle et al. 2007). 
An important biodiversity assessment tool that 
incorporates functional aspects is functional 
beta diversity. Unlike taxonomic beta diversity, 



EWERTTON S. GADELHA et al. TAXONOMIC TURNOVER AND FUNCTIONAL HOMOGENIZATION

An Acad Bras Cienc (2022) 94(3) e20201894 2 | 16 

which allows changes in species composition 
between sites or over time (Anderson et al. 
2011) to be evaluated, functional beta diversity 
estimates the differences between communities 
based on the functional traits of the species 
(Villéger et al. 2013).

Studies of beta diversity over time describe 
changes in taxonomic and functional composition 
between different periods (Korhonen et al. 
2010), and may reflect two different phenomena 
known as beta diversity partitions, which result 
from nestedness and turnover (Whittaker 1960, 
Tuomisto 2010). Nestedness of community 
of species occurs when biotas of sites with 
fewer species are subsets of biotas in richer 
areas, reflecting a process of species loss as 
a consequence of any factor that promotes 
the ordered disaggregation of communities. 
In addition, functional aspects are related 
with the loss of functional traits or functional 
homogenization (Olden 2006). Turnover implies 
the substitution of some species by others as 
a consequence of environmental, spatial, and/
or temporal restriction (Whittaker 1960, Baselga 
2010), and for functional aspects it indicates a 
greater substitution of functional traits among 
communities (Villéger et al. 2013). Most studies 
have focused on evaluating beta diversity with 
taxonomic aspects. However, some studies 
have already demonstrated that a functional 
approach is more sensitive in capturing the 
effects of environmental changes, especially 
when changes in taxonomic beta are not evident 
(Braghin et al. 2018, Simões et al. 2020, Diniz et 
al. 2021).

Beta diversity patterns can be affected 
both by deterministic and stochastic processes 
(Tuomisto 2010). Deterministic processes are 
based on niche theory, which assumes that 
environmental filtering and biotic interactions 
play an important role in shaping the 
composition of local communities (Leibold et 

al. 2004, Cadotte & Tucker 2017). On the other 
hand, stochastic processes are related to the 
importance of colonization rates, speciation, 
random extinction, and disturbances (Chase 
& Myers 2011). Studies on river plankton have 
shown that beta diversity and its partitions are 
determined by both environmental and spatial 
factors, and that hydrological factors influence 
the dispersion and composition of functions 
and species (Lopes et al. 2014, Gianuca et al. 
2017, Serafim-Júnior et al. 2019). Furthermore, 
anthropic action (e.g., dams and eutrophication) 
can alter environmental filters and cause 
disturbances in aquatic environments, leading 
to providing functional homogenization in the 
plankton (Braghin et al. 2018, Pineda et al. 2020, 
Simões et al. 2020).

Among aquatic organisms, rotifers 
constitute the plankton group with the highest 
species richness and population density in 
many freshwater ecosystems like rivers and 
lakes (Lansac-Tôha et al. 2009, Matsumura-
Tundisi et al. 2015, Costa et al. 2016, Zhao et al. 
2017, Branco et al. 2018, Picapedra et al. 2019). 
These organisms are crucial in continental 
food networks since they intermediate the flow 
of matter and energy transfer from producers 
to higher trophic levels (Almeida et al. 2009). 
Thus, studies on the functional structure of this 
community can help understand the ecosystem 
processes such as productivity and nutrient 
cycling, and serve as a proxy for the general 
condition of the environment (Díaz & Cabido 
2001, Braghin et al. 2018).

According to Chaparro et al. (2019), 
hydrological conditions (e.g., river level) and 
environmental heterogeneity are important 
environmental filters for rotifers functional 
beta diversity because functional beta diversity 
has responded positively when these variables 
increase. The same pattern was observed for 
taxonomic beta diversity, which, according 
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to Lopes et al. (2014) and Soares et al. (2015), 
is positively correlated with environmental 
heterogeneity and therefore represents a 
deterministic process of environmental filtration. 
Several studies indicate that taxonomic beta 
diversity may increase over time in river 
ecosystems (Bonecker et al. 2013, Soares et al. 
2015, Lopes et al. 2017). This increase is explained 
by the variability of limnological conditions, 
which promotes a greater spatial heterogeneity 
that consequently makes the communities more 
spatial and heterogeneous over time (greater 
beta diversity) (Bonecker et al. 2013).

Based on the above considerations, this 
study aims to evaluate the dynamics of temporal 
variation of taxonomic and functional beta 
diversity and their respective partitions (turnover 
and nestedness) in the rotifer community in a 
lotic system in the eastern Amazonian region. 
The relationships between these biodiversity 
measures were also evaluated using temporal 
dissimilarity, environmental heterogeneity, and 
seasonality.

To achieve these objectives the following 
hypotheses were tested: (i) Taxonomic beta 
diversity is positively related to functional 
beta diversity and ii) taxonomic and functional 
beta diversity are higher in the rainy season. A 
positive relationship between functional and 
taxonomic beta diversity and higher values 
in the rainy season are expected due to the 
increase in the connection and flow of nutrients 
and organisms between aquatic systems (rivers, 
lakes, and floodplains), in productivity levels, 
and in richness of pelagic and coastal rotifer 
species (Bonecker et al. 2013, Serafim-Júnior 
et al. 2019) in this higher rainfall period. These 
characteristics would lead to higher values of 
taxonomic and functional beta diversity; (iii) the 
turnover component is responsible for changes 
in the beta diversity of the rotifer community. 
Turnover is expected to be the main component 

of variation in functional and taxonomic 
beta diversity due to the water flow in lotic 
environments, which favors the dispersion of 
planktonic species (Gianuca et al. 2017a, Braghin 
et al. 2018); (iv) functional and taxonomic 
beta diversity are positively correlated with 
environmental dissimilarity and/or temporal 
dissimilarity. A positive relationship between 
functional and taxonomic beta diversity 
and the environmental dissimilarity is also 
expected because environmental dissimilarity 
favors changes in species composition for 
several distinct communities due to the greater 
availability of niches (Leibold et al. 2004) and in 
species traits over time (Simões et al. 2020).

MATERIALS AND METHODS
Study location
Samples were carried out monthly from October 
2017 to June 2019. The wettest months are 
considered to be from January to June, and the 
least rainy from July to November. The study 
was carried out in the Guamá River (1°28’36.8” 
S 48°29’32.1” W), located in the city of Belém, in 
the state of Pará, Brazil. This city was built on an 
estuarine sedimentary peninsula, and delimited 
by the Guamá River to the south, which is 
between 1360 and 2000 m wide and 700 km long 
(Ramos 2004). The mouth of the Guamá River 
receives a strong influence from ocean tides, and 
has constant sediment inputs from Guajará bay, 
which may become slightly brackish at the peak 
of the less rainy period (Monteiro et al. 2009). In 
this region, the rainy season corresponds to the 
months of December to June, and the least rainy 
season occurs between the months of July to 
November (Bastos et al. 2002).

Due to the great amount of suspended 
material, the Guamá River has high turbidity, 
muddy aspect, greenish-yellow color and little 
light penetration. Based on its physicochemical 
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properties this area is classified as a freshwater 
environment (Santos et al. 2014). On the other 
hand, Lima & Santos (2001) consider this area 
an atypical estuarine due to the slight salinity 
increase recorded in periods of lower rainfall 
intensity when an unmistakable penetration of 
Atlantic Ocean waters occurs. For the purposes 
of this study, the area of study will be considered 
as a freshwater environment as proposed by 
Santos et al. (2014).

Environmental parameters
For the sampling of chlorophyll-a, the 
methodology of CETESB (2014) was followed. We 
collected water from the subsurface with a 200 
ml polyethylene bottle for further analysis of 
chlorophyll-a in a spectrophotometer, and the 
sample was filtered in the laboratory. Based on 
chlorophyll-a values, the trophic state index 
(TSI) was estimated as proposed by Cunha et 
al. (2013). Precipitation data were obtained 
and compiled in the National Institute of 
Meteorology database (http://www.inmet.gov.
br/portal/index.php?r=bdmep/bdmep), while 
water height data were obtained through the 
National Institute for Space Research (http://
ondas.cptec.inpe.br/).

Community sampling
Sampling was performed at a single point 
with two subsamples by horizontal drag, for 
2 minutes, in a subsurface with a flow meter 
coupled in a conical plankton net (mesh size= 
64 μm, diameter= 60 cm) totaling 36 samples. 
The samples were filtered and stored in a 200 
mL polyethylene container properly labeled 
and fixed in 4% formaldehyde neutralized with 
Sodium Tetraborate (Brandão et al. 2011). The 
subsamples were summed and the density of 
the organisms were expressed in individuals per 
liter (ind. L-1). For the quantitative analysis of the 
rotifer community, 10% of the water volume in 

samples (20 ml) were filtered, and the specimens 
were extracted with a Hansen-Stempel pipette 
as proposed by Bottrell et al. (1976). The 
rotifers were viewed under a binocular optical 
microscope (Nikon model OPTIPHOT 2) with a 
200x magnification and identified at the lowest 
possible taxonomic level through the works of 
Koste & Shiel (1986), Sharma & Sharma (1999) 
and Fontaneto et al. (2008).

Functional traits
According to Barnett et al. (2007), Litchman et al. 
(2013) and Hébert et al. (2016), functional traits 
incorporate ecological aspects of the community 
and describe the response of organisms to 
environmental conditions. Traits can predict 
the dominance among species based on their 
competitive resource skills. Thus, a continuous 
quantitative characteristic (body size) and 
four categorical characteristics (feeding mode, 
feeding habits, predator escape strategies and 
habitat) were selected (Table I). To measure 
the functional traits of average body size (μm), 
the mean size per species was calculated, 
and a maximum of 10 photos (10 individuals) 
were captured of each species using Software 
Image Tool 3.0. For the species that could not 
be photographed, the average size provided by 
Bonecker et al. (1998) was used for organisms 
captured in the floodplain of the upper Paraná 
River. The categorical characteristics feeding 
mode, feeding habit, predator escape strategies 
and habitat were obtained from Bonecker et al. 
(1998), Hampton & Starkweather (1998) and the 
Japanese National Institute of Environmental 
Studies (http://www.nies.go.jp/chiiki1/protoz/
index.html).

Data analysis
The difference in environmental variables 
(water level, rainfall, trophic status index and 
chlorophyll-a) between the periods evaluated 

http://www.nies.go.jp/chiiki1/protoz/index.html
http://www.nies.go.jp/chiiki1/protoz/index.html
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for seasonality (rainy and less rainy) were tested 
using a t-test. 

For beta diversity analysis, a presence-
absence matrix from a quantitative matrix with 
30 identified rotifer species and 18 months 
of sampling (11 rainy months and 7 less rainy 
months) was used. The Sorensen index (βsor) 
was used to calculate the paired dissimilarity 
of species composition among all samples 
(Baselga & Orme 2012). 

Previously to the calculation of functional 
beta diversity, the distance matrix between the 
functional traits of the species was calculated 
using the Gower distance coefficient (Gower 
1966), which was later transformed into a 
dendrogram. To calculate functional dissimilarity 
(functional beta diversity), the Sorensen index 
was adapted to functional traits (Melo 2013) 
by using the functional dendrogram and the 
presence-absence matrix of species. Taxonomic 
and functional βsor were decomposed into 
two components that represent results from 

nestedness (βnes) and turnover (βsim), 
taxonomic according to Baselga & Orme 
(2012) and the latter according to Melo (2013). 
Although the Baselgas’s method overestimates 
the turnover component and underestimates 
species richness (Podani & Schmera 2011, 
Carvalho et al. 2012), it is widely used, which 
allows comparisons with other studies. The 
“ade4” (Chessel et al. 2004) and “vegan” 
(Oksanen et al. 2017) packages were used to 
construct the functional distance matrix and the 
dendrogram. “Beta.pair” function (Baselga 2010) 
was used to estimate taxonomic beta diversity 
while “functional.beta.pair” diversity was used 
to analyse functional beta diversity.

To test the hypothesis (i) of a positive 
correlation between functional and taxonomic 
beta diversity, the Mantel test (1000 permutations, 
function “mantel”, package “ecodist”) was 
applied. We applied a permutational analysis 
of variance to test the hypothesis (ii) that the 
taxonomic and functional beta diversity is 

Table I. Description of the used functional traits of rotifers species.

Functional
traits

Feature type Data type Importance

Average body 
size Morphologic Continuous

It can reflect secondary productivity, larger size species. In 
general, presentes higher productivity in the position of 

the trophic web species (primary consumer) and in energy 
transference (larger organism have higher biomass to 
transfer to higher trophic levels) (Litchman et al. 2013).

Feeding
mode

Feeding Categorical
Represents the morphofunctional variability for food 

acquisition, reflecting the diversity of trophic niche, and 
can be related to secondary productivity and nutrient 

cycling (sucking, predator, filter and scraper).Feeding
habits

Predator
escaping

Behavior Categorical
Describes different morphological and/or behavioral 

adaptations (vertical and horizontal migration, presence 
of spines, among others).

Habitat Behavior Categorical
The habitat type defines where the species are most 

easily found. It represents the participation of the species 
in the trophic chain of different compartments, affecting 

the processes of energy transfer and nutrient cycling.
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greater in the rainy season than in the less 
rainy season (PERMANOVA, function “adonis”; 
package “vegan”; Anderson et al. 2008, Oksanen 
et al. 2018). To test the hypothesis (iii) that the 
turnover component is greater than the nesting 
pattern, we apply paired t-tests (function  
“t-test”) for each dissimilarity type (species and 
functional).

 Environmental dissimilarity was estimated 
using a Euclidean distance matrix from 
logarithmic environmental variables (water 
level, precipitation and chlorophyll-a) and 
standardized by the Scale function between the 
months of sampling. We estimated the temporal 
dissimilarity between the sampling months also 
using a Euclidean distance matrix, and it was 
used as a temporal variation of the dataset 
(Dunck et al. 2015, Lopes et al. 2017). We use the 
partial Mantel test (1000 permutations, function 
“mantel.partial”, package “vegan”) to evaluate the 
hypothesis (iv) of positive correlation between 
taxonomic and functional beta diversities 
with the environmental dissimilarity matrix 
(water level, precipitation) and chlorophyll-a) 
controlling the effect of the temporal matrix, 
and with the temporal dissimilarity controlling 
the effect of the environmental matrix between 
the seasonal periods (wet and less rainy).

In addition to the partial Mantel test, multiple 
regressions were applied on distance matrices 
(“MRM function”, “ecodist” package, Legendre et 
al. 1994, Dunck et al. 2019) to test the hypothesis 
(iv) that functional and taxonomic beta diversity 
are explained by  environmental dissimilarity 
and temporal dissimilarity. MRM involves a 
multiple regression of a response matrix on any 
number of explanatory matrices (Lichstein 2007). 
Here, environmental dissimilarity and temporal 
dissimilarity were explanatory variables for the 
taxonomic or functional beta diversity (response 
variables). The significance of the regression 
coefficients and determination coefficients were 

evaluated with 10,000 permutations. Since these 
parameters are tested by permutations, it is not 
necessary to test the assumptions (Legendre 
& Legendre 1998). The R platform was used to 
perform all analyses (R Core Team 2014). 

RESULTS
Environmental variables
During the year of study, rainfall was significantly 
higher in the rainy season (t= 5.36, df= 11.97, p= 
0.0002) and while other environmental variables, 
namely chlorophyll-a (t= 2.16, df= 11.58, p= 0.052), 
water height (t= -1.81, df= 12.14, p= 0.094) and 
TSI (t= 0.978, df= 12.19, p= 0.346) did not differ 
seasonally (Table II, Supplementary Material - 
Figure S1).

Rotifers
A total of 693 organisms were identified and 
distributed in 30 species belonging to 13 
families. Keratella cochlearis (Gosse, 1851) and 
Keratella americana Carlin, 1943 were the most 
representative taxa throughout the study period. 
The density of organisms reached a minimum of 
67 ind. L-1 (August/2019) and maximum 209016 
ind. L-1 (September/2019). The individuals 
with highest average annual densities were K. 
cochlearis 10596 ind. L-1 (± 32765 SD), Ascomorpha 
sp. 14253 ind. L-1 (± 15679 SD) and K. americana 
638 ind. L-1 (± 1284 SD). The most prevalent 
functional attributes during the months of 
study were herbivorous, pelagic, filter feeder, 
presence of spine and freshwater species, which 
accumulated an annual frequency of 86%, 92%, 
91%, 80% and 96%, respectively (Figure 1).

The taxonomic beta diversity presented an 
average of 0.56 (± 0.13 SD), and did not differ 
between rainy periods (mean of 0.47 ± 0.01 SD) and 
less rainy (mean of 0.55 ± 0.01 SD) (PERMANOVA 
total df = 17, residual df = 16, pseudo-F = 1.42, p 
= 0.14) (Figure S2a). The functional beta diversity 
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presented an average of 0.63 (±0.35 SD), and 
did not differ between rainy periods (mean 
of 0.35 ± 0.1 SD) and less rainy (mean of 0.45 ± 
0.15 SD) (PERMANOVA total df= 15, residual df = 
14, pseudo-F = 4.71, p = 0.053) (Figure S2a). The 
average of taxonomic turnover component was 
0.35 (±0.21 SD), significantly higher than those 
resulting from taxonomic nestedness (average 
of 0.21±0.18 SD) (t= -4.35, df= 152, p<0.001). The 
inverse was found for functional beta diversity, 
for which the resulting nestedness (average of 
0.41 ± 0.38 SD) was higher than the turnover 
component (average of 0.20 ± 0.25 SD) (t= 4.47, 
df=135, p< 0.001) (Figure S3). Functional and 
taxonomic beta diversity were negatively related 
(Mantel test, R= -0.26, p= 0.014). No significant 
relationship between taxonomic beta diversity 
and environmental dissimilarity and temporal 
dissimilarity was found based on partial mantel 
tests and MRM (MRM, Less rainy period R2= 
0.094, Rainy period R2= 0.033, Table III). However, 
a relationship between functional beta diversity 
and temporal dissimilarity during the less rainy 
period (MRM, Less rainy period R2= 0.77, p= 0.03, 
Temporal dissimilarity, Rainy period R2= 0.02, p= 
0.60, Table III) was found based on MRM.

DISCUSSION
Our study did not find a seasonal difference 
in environmental variables. We demonstrated 
a negative relationship between taxonomic 
and functional beta diversity, which refuted 
the initial hypothesis of a positive correlation 
between them. These results indicate that the 
variation in species composition increased over 
time, but there was a decrease in the variation 
of functional traits of rotifers over time in this 
ecosystem. These results of taxonomic beta 
diversity was promoted by turnover, indicating 
species replacement over time, while a 
nestedness pattern of functional beta diversity 

occurred over time. These results indicate that 
despite the species replacement increased over 
time, there was a decrease in the variation of 
functional traits and increase in the functional 
similarity of rotifers over time in this ecosystem. 
There were also no seasonal differences in 
taxonomic and functional beta, which refuted 
our initial hypothesis of higher values of both 
in the rainy season. The absence of a seasonal 
effect on beta diversity in our study probably 
is due the low environmental dissimilarity and 
the absence of seasonality in the environmental 
variables, which did not show any seasonal 
differences.  

Our results showed a low environmental 
dissimilarity and the environmental variables 
did not show a seasonal effect. The studied 
environment was predominantly characterized 
as hypereutrophic (Cunha et al. 2013), and the 
eutrophication observed can be considered 
a disturbance, which can generate biotic 
homogeneity (Olden 2006, Gianuca et al. 2017a, 
Liu et al. 2020). In addition, the Guamá River 
has a long extension, strong water flow, a bay 
connection and access to other secondary 
rivers, which contribute to the low temporal 
and seasonal environmental variability. The 
dissimilarity of limnological variables decreases 
with increasing water levels and river flow (Bozelli 
et al. 2015) because it connects aquatic habitats. 
Horizontal flows are produced from the river 
course (Thomaz et al. 2007, Bozelli et al. 2015), 
and this may explain the low environmental 
dissimilarity.

The negative relationship between 
taxonomic and functional beta diversity, 
taxonomic turnover and functional nestedness 
patterns indicates that the substitutions of 
species that occurred over time is mainly 
among functionally redundant taxa. And also 
that functional nestedness resulted from the 
loss of extreme combinations of functional 
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Table II. Values average, maximum, minimum, and standard deviation of the environmental variables used in 
this study. Tide = height of water (m), Clha = chlorophyll-a, TSI = trophic state index, Rai = rainfall (mm), dC_Env = 
environmental dissimilarity, JAN- january, FEB- february, MAR- march, APR- april, JUN- june, JUL- july, AUG- august, 
SEP- september, OCT- october and NOV- november.

Samples Rai Clha TSI Tide dC_Env

Less
rainy

OCT17 223 0.76 21.57 2.80 1.07

NOV17 103 1.09 22.95 0.65 1.14

Rainy

JAN18 363 2.65 26.33 0.65 1.3

FEB18 672 1.46 24.17 3.1 1.47

MAR18 507 1.75 24.83 0.70 1.05

APR18 406 2.68 26.24 1.90 0.91

JUN18 133 1.24 23.59 0.50 1.19

Less
rainy

JUL18 135 0.81 22.02 1.90 1.10

AUG18 193 1.39 23.98 3.15 0.98

SEP18 171 1.41 24.05 2.40 0.84

OCT18 135 1.41 24.05 2.50 0.88

NOV18 246 1.30 23.77 3.10 0.79

Rainy

JAN19 414 3.43 27.28 2.90 1.1

FEB19 453 1.88 25.10 0.20 1.23

MAR19 625 1.54 24.37 0.10 1.38

APR19 494 1.69 24.7 2.10 0.96

MAY19 394 0.58 18.4 0.70 1.08

JUN19 333 1.59 23.97 1.73 0.77

Mean 333 1.59 23.97 1.73 1.07

Minimum
Maximum

103-672 0.58-3 18-27 0.10-3 0.78-1.00

Standard
deviation

175.58 0.72 1.97 1.10 0.20
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space characteristics, similar results found 
by Braghin et al. (2018) for zooplankton in 
dammed rivers, and by Villéger et al. (2013) 
in fish assemblages in European rivers. The 
increase in the functional similarity of rotifers 
over time due to the substitution of species that 
have unique functional “roles” can lead to the 
establishing of species with similar “roles” in the 
ecosystem (i.e., species with various functional 
equivalents) (Olden 2006). For Soininen et 
al. (2017) the negative correlation between 
turnover and nestedness can be a result that 
the two diversities respond independently to 
environmental variables, pattern that may be 
seen in our study. 

Functional redundancy promotes the 
maintenance of ecosystem processes in case 
disturbances extinguish species, which would 
be compensated by the presence of functionally 
similar taxa with different responses to changes in 
environmental factors or disturbances (Elmqvist 
et al. 2003). This long-term maintenance is a 
type of stability defined as resilience, that is, the 
ability of a community to return from its effects 
on ecosystem processes to an earlier state, 
after change due to a disturbance (Pillar et al. 
2013). Thus, the Guamá River rotifer community 
has a high functional redundancy between 
seasonal periods. Redundancy indicate that the 
ecosystem functions performed by the species 
are robust and can be maintained when there 

Figure 1. Relative frequency (%) of the functional traits of the rotifer community over the period of October/2017 
to June/2019. Where, a- feeding habits: carnivore, herbivore and omnivore, b- habitat: pelagic and littoral, c- 
feeding mode: filter, Scraper, Sucker and raptor, d- predator escape: no escape, Spine, jump swimming and body 
retraction, e- freshwater, marine and euraline.
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is a change in the diversity and composition 
of species, so that the community has a great 
resilience to disturbances in the functions 
performed by existing species (Micheli & 
Halpern 2005). According to the functional traits 
evaluated, functional traits are maintained over 
time, and species perform similar functions 
in communities and ecosystems despite the 
temporal variation in the composition of 
the rotifer community in the Guamá River. 
Furthermore, their replacement would have 
little impact on ecosystem processes developed 
by these communities.

In lotic environments, the high flow of 
rivers provides greater dispersion of species, 
which together with eutrophication gradients 
can boost species substitution, and changes 
their tolerances to eutrophication (Declerck et 
al. 2007). Therefore, river flow, dispersion and 
eutrophication are responsible for the selection 
of organisms with characteristics that best suit 
environmental conditions. Gianuca et al. (2017a) 
hypothesized that functional redundancy may be 
a dominant pattern in homogeneous landscapes, 
which means that different species with similar 
characteristics are replaced (turnover) among 

Table III. Multiple regression on distance matrices (MRM) and partial Mantel test between matrices of 
environmental dissimilarity (dC_Env) and temporal dissimilarity (Time) and distance matrices of beta taxonomic 
and functional diversity between seasonality. Correlation (r) and statistical significance (p) after 10000 
randomizations. *bold significative values p< 0.05.

Beta Predictor Mantel Partial MRM

diversity variable Seasonality

r p p

Taxonomic dC_Env 0.01 0.45 0.97

Less rainy

Time 0.27 0.12 0.23

dC_Env -0.15 0.79 0.42

Rainy

Time 0.07 0.22 0.55

Functional dC_Env -0.42 0.90 0.08

Less rainy

Time 0.85 0.08 0.03*

dC_Env 0.12 0.29 0.60

Rainy

Time -0.07 0.67 0.60
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local communities. The studied environment 
did not present limnological differences 
between seasonal periods, and remained 
hypereutrophic over time, and therefore can 
be considered a limnological homogeneous 
environment. Functional redundancy is likely 
to happen because homogeneous landscape 
species need to be able to survive similar 
environmental filters (Gianuca et al. 2014). It is 
possible that the landscape’s environmental 
homogenization, which may or may not result 
from a common environmental change, selects 
functionally redundant species. This leads 
to a rapid convergence of functional traits in 
the metacommunities (Gianuca et al. 2017a). 
Thus, homogeneity did not favor functional 
beta diversity in the study, since the low 
environmental variability allows only similar 
species to occur (Gerisch et al. 2012, Braghin et 
al. 2018).

In the studied environment the species 
that prevailed were rotifers with biomass 
between 0.1 and 0.5 μg.DW.m−3, filter feeders, 
omnivores-herbivores, pelagics and those with 
spines or without predator escape strategies 
(Brachionidae, Euchlanidae, Lecanidae, 
Lepadellidae, Philodinidae and Proalidae) (Table 
SI). Euchlanis sp. Ehrenberg, 1832, captured 
in August 2018, was replaced by Brachionus 
quadridentatus Hermann, 1783 in the subsequent 
month, both have the same functional traits 
mentioned, except that the first species was 
littoral and the second pelagic. Organisms 
with these characteristics are probably more 
resilient to hypereutrophic environments and 
low environmental heterogeneity.

According to Gianuca et al. (2017b), 
eutrophication causes the loss of large 
zooplankton species and increases abundance 
of smaller species. Turbid waters inhibit the 
predation of these organisms and increase 
the survival rate of species without an escape 

strategy. Species that presented reduced escape 
capacity are responsible for maintaining trophic 
relationships, especially in lotic environments 
(Garcia et al. 2018). Therefore, this study 
corroborates the pattern found by Garcia et al. 
(2018) in a study that found a higher proportion 
of species with low escape strategy in a lotic 
environment.

The predominance of omnivorous-
herbivorous filter feeder species in this study 
may have been favored by the hypereutrophic 
condition of the environment and consequently 
the increase in phytoplankton density. The 
temporal changes in rotifer diversity has been 
attributed to changes in phytoplankton trophic 
chains (Wagner & Adrian 2011), especially when 
changes occur in phytoplankton abundance 
and size (Obertegger & Manca 2011). The higher 
proportion of filter feeder rotifers reflects the 
ability of this group to survive in environments 
with reduced food quality. They are considered 
opportunistic and generalist in their diet since 
they obtain their food through water currents 
that drag algae and bacteria (Allan 1976).

A relationship between taxonomic beta 
diversity with environmental dissimilarity 
and environmental variables was expected as 
reported by previous studies (Leibold et al. 
2004). Although environmental dissimilarity 
should intuitively influence beta diversity there 
are studies that have failed to show a significant 
relationship between these variables (Lopes 
et al. 2014, Soares et al. 2015). Thus, further 
studies are necessary to understand the role 
of environmental variables and environmental 
dissimilarity in the composition of rotifer 
species.

Finally, the temporal study of the taxonomic 
and functional beta diversity and their respective 
partitions of the rotifer community in the Guamá 
River was important to clarify the structure of 
this community in response to a hypereutrophic 
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lotic environment with low environmental 
dissimilarity. This work motivates further studies 
in Amazonian environments, little known about 
the autecology of rotifer species. It is important 
to emphasize that temporal studies should 
assess both taxonomic and functional aspects 
of communities, mainly because the effect of 
environmental changes can be more noticeable 
at the functional level of communities.
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SUPPLEMENTARY MATERIAL
Figure S1. Environmental variable variation, 
environmental heterogeneity and beta diversity 
components from October/2017 to June/2019. 
Where, a- water height (m); b-chlorophyll-a (mg/
m³); c- trophic state index - TSI; d- environmental 
heterogeneity; e-functional beta diversity; and f- 
taxonomic beta diversity.
Figure S2. Taxonomic (a) and functional (b) beta 
diversity boxplots of rotifers communities divided into 
two seasonal groups, rainy and less rainy. The strong 
line shows the median, the ends of the boxes show 
quartiles, and open circles show outliers.
Figure S3. Taxonomic (a) and functional (b) beta 
diversity boxplots of rotifers communities divided 
into their components resulting from nestedness and 
turnover on a time scale. The strong line shows the 
mean, the ends of the boxes show quartiles, and open 
circles show outliers.
Table SI. List of abundances of zooplankton species 
from the Rio Guamá over the study period. 
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