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ABSTRACT

Peptides are remarkably reactive molecules produced by a great variety of species and able to display a number of

functions in uni- and multicellular organisms as mediators, agonists and regulating substances. Some of them exert

cytotoxic effects on cells other than those that produced them, and may have a role in controlling subpopulations

and protecting certain species or cell types. Presently, we focus on antifungal and antitumor peptides and discuss

a few models in which specific sequences and structures exerted direct inhibitory effects or stimulated a protective

immune response. The killer peptide, deduced from an antiidiotypic antibody, with several antimicrobial activities and

other Ig-derived peptides with cytotoxic activities including antitumor effects, are models studied in vitro and in vivo.

Peptide 10 from gp43 of P. brasiliensis (P10) and the vaccine perspective against paracoccidioidomycosis is another

topic illustrating the protective effect in vivo against a pathogenic fungus. The cationic antimicrobial peptides with

antitumor activities are mostly reviewed here. Local treatment of murine melanoma by the peptide gomesin is another

model studied at the Experimental Oncology Unit of UNIFESP.
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INTRODUCTION

Bioactive peptides arise from proteins by the action of

peptidases or are chemically synthesized based on cer-

tain templates of natural sequences that have been se-

lected by a variety of screening methods. Peptides can

be designed aiming at enhanced functional activity by

using amino acid substitutions and chemical modifica-

tion. Owing to their great diversity of binding properties,

peptides can play roles of biochemical reagents, phar-

macological drugs, hormones, antibiotics, vaccines and

mediators of neural and immunological signaling. Pep-

tides interact with membrane structures, are specifically
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recognized by cell surface receptors or act as ligands in-

teracting with intracellular compounds and subcellular

structures. Peptides can include epitopes recognized by

antibodies and TCRs, and those called protective epi-

topes elicit a protective immune response. On focusing

the actual fungal and tumor models, peptides that display

direct cytotoxicity on target cells or elicit a protective

immune response in animals experimentally infected or

challenged with tumor cells have been investigated.

ANTIFUNGAL PEPTIDES

During the past decades, an increase in the incidence of

fungal diseases has been recognized mainly caused by

Candida spp. and filamentous fungi such as Aspergil-

lus spp. (reviewed in Mavor et al. 2005 and Brakhage

2005). To date, there are no licensed fungal vaccines, and
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the use of antimycotics is the only option for the treat-

ment of fungal infections. Currently used antimycotics,

however, frequently have a limited activity spectrum, are

available only in intravenous formulations, favor resis-

tance development, and cause serious side-effects (re-

viewed in François et al. 2005). Thus, the search for

new antifungal therapies is strongly stimulated, and the

use of antifungal peptides is a promising alternative.

Antifungal properties of peptides have been re-

viewed by De Lucca and Walsh (2000). There are 405

peptides with antifungal properties described, compris-

ing linear or cyclic, hydrophobic or amphipathic struc-

tures (http://aps.unmc.edu/AP/main.php).

Their cytotoxicity may involve binding to and dis-

ruption of the membrane (Shai 1995), membrane pene-

tration and interaction with the mitochondria (Helmer-

horst et al. 1999) or pore formation (Bechinger 1997).

Antifungal peptides have been studied in bacteria, fungi,

plants, insects, amphibians and mammals. Relevant ex-

amples are given next.

Syringomycins, syringostatins and syringotoxins

from Pseudomonas syringae are lipodepsipeptides

highly lethal to Candida albicans, Aspergillus and Fu-

sarium species (De Lucca and Walsh 2000, De Lucca

et al. 1999, Sorensen et al. 1996). Glycopeptide cepa-

cidines from Burkholderia cepacia are active against

Candida sp., Aspergillus niger, Fusarium oxysporum

and Cryptococcus neoformans (Lee et al. 1994, Lim et

al. 1994). Antifungal peptidylnucleoside nikkomycins

are produced by Streptomyces tendae, act by inhibiting

chitin biosynthesis and were effective in murine infec-

tions by Coccidioides immitis and Blastomyces dermati-

tidis (Hector et al. 1990). Zeamatin, the 22 kilodal-

ton (kDa) peptide produced by Zea mays, permeabi-

lizes the fungal membrane and kills C. albicans with

a minimal inhibitory concentration (MIC) of 0.5 μg/ml

(Roberts and Selitrennikoff 1991). Cecropins from the

silk moth Hyalopora cecropia are linear, lytic peptides

effective against germinating conidia of F. oxysporum

and A. fumigatus (De Lucca et al. 1998). Both the L-

and D-isomeric forms of cecropin B were fungicidal (De

Lucca et al. 2000). Drosomycin is a 44 amino acids (aa)

inducible peptide active against F. oxysporum (Lemaitre

et al. 1997). There is no evidence of adaptive protein

evolution in the drosomycin genes, suggesting that they

do not coevolve with pathogens (Jiggins and Kim 2005).

In contrast, antimicrobial peptides (AMPs) appear to un-

dergo a rapid adaptive evolution in vertebrates. In frogs,

each species produces 10-20 AMPs that differ in size,

sequence and specificity, and this rapid diversification is

driven by evolutionary selection (Duda et al. 2002). Der-

maseptins, produced by Phyllomedusa sauvagii, a South

American frog, are lysine-rich linear peptides fungici-

dal for A. flavus, A. fumigatus and F. oxysporum (Mor

et al. 1994). Magainins are antifungal peptides pro-

duced by the African frog Xenopus laevis (De Lucca and

Walsh 2000). They are not hemolytic and inhibit Can-

dida albicans (Zasloff 1987). Plant [DmAMP1 from

dahlia (Dahlia merckii), RsAFP2 from radish (Raphanus

sativus), HsAFP1 from coral bells (Heuchera sangui-

nea), Psd1 from pea (Pisum sativum), MsDef1 from al-

falfa (Medicago sativa) and MtDef2 from barrel medic

(Medicago truncatula)], insects (Termicin from the ter-

mite Pseudacanthotermes spiniger, Drosomycin from

the fruitfly Drosophila melanogaster, Heliomicin from

the tobacco budworm Heliothis virescens) and human [β-

defensin 1 (HBD1), β-defensin 2 (HBD2), β-defensin

3 (HBD3)] defensins showed antifungal properties (re-

viewed in Aerts et al. 2008). Although there are no clear

similarities in the mode of action of these defensins, the

presence of sphingolipid glucosyl ceramide (GlcCer) in

fungal membranes seems to play a central role in the ac-

tion of some defensins (Thevissen et al. 2004). Only

Psd1 was internalized in the fungal cell, affecting the

normal progression of the cell cycle (Lobo et al. 2007),

and it is possible that the other defensins stay outside the

cell inducing fungal cell death after interaction with their

target (e.g. sphingolipids) and modulation of intracellu-

lar signaling cascades (Aerts et al. 2008). RsAFP2 was

also effective in an in vivo prophylactic model of murine

candidiasis (Tavares et al. 2008).

β-Defensins include porcine cationic, cysteine-rich

protegrins which inhibited C. albicans (Cho et al. 1998).

Gomesin, a cationic AMP isolated from the hemocytes

of the unchallenged Brazilian spider Acanthoscurria

gomesiana (Silva et al. 2000), is structurally related to

protegrins and exerts microbicidal activity against fila-

mentous fungi, yeast and parasites. Gomesin bound to

the surface of Cryptococcus neoformans, resulting in cell

death by membrane permeabilization. Fungal growth, in

An Acad Bras Cienc (2009) 81 (3)



“main” — 2009/7/27 — 14:47 — page 505 — #3

ANTI-FUNGAL AND ANTITUMOR PEPTIDES 505

the presence of the peptide, induced a decrease in cap-

sule expression, rendering cells more susceptible to brain

phagocytes and, in association with fluconazole, in con-

centrations with low antimicrobial activity (0.1–1μM),

inhibited fungal growth and enhanced the antimicrobial

activity of brain phagocytes (Barbosa et al. 2007). One

of the models described in the present review is that of

gomesin cytotoxicity in murine and human tumor cells

(Rodrigues et al. 2008).

Among the antifungal peptides produced by fungi,

the echinocandins interfere with the cell wall biosyn-

thesis (Denning 1997) and the pneumocandins, aculea-

cins, WF11899, and mulundocandins have a modified

echinocandin B peptide core (Debono and Gordee 1994,

Kurtz and Douglas 1997). Echinocandins are produced

by Aspergillus nidulans and A. rugulosus and are effec-

tive against Candida (MIC = 0.6μg/ml for echinocandin

B and C. albicans) (reviewed in De Lucca and Walsh

2000). Clinical trials have started with molecules of

the echinocandin group, VER-002, FK463 and caspo-

fungin (MK-0991) modified for increased solubility and

active against Candida spp. and Aspergillus spp. V-

echinocandin and FK463 were effective in the treatment

of esophageal candidiasis, the latter in AIDs patients

(reviewed in De Lucca and Walsh 2000). Clinical tri-

als with caspofungin (derived from pneumocandin), a

drug that inhibits β-1,3 D-glucan synthase, have shown

excellent results in the treatment of Candida infections

and invasive aspergillosis refractory to other antifungal

agents (i.e., conventional or lipid formulations of ampho-

tericin B and/or itraconazole). Aureobasidins are pro-

duced by Aureobasidium pullulans, interfere with sphin-

golipid synthesis and are effective against murine can-

didiasis (Nageic et al. 1997, Takesako et al. 1993).

KILLER TOXINS AND KILLER PEPTIDES

Killer yeasts secrete killer toxins that target suscepti-

ble cells in a two-step receptor-mediated manner. They

bind to cell wall receptors and translocate to the plasma

membrane. They can then interact with secondary

receptors or enter susceptible cells to exert a cytoci-

dal effect (Magliani et al. 1997, Schmitt and Breinig

2006). β-1,6 Glucan, α-1,3 mannoprotein and β-1,3

glucan are possible receptors, the latter for killer toxins

from species of Pichia and Williopsis. Killer toxins kill

susceptible cells by various mechanisms, including the

induction of cation-selective ion channels in the plasma

membrane, interference in the cell cycle (G1, G1/S, S

arrest), chromosomal DNA synthesis and anticodon nu-

clease (Schmitt and Breinig 2006, Santos and Marquina

2004, Jablonowski and Schaffrath 2007, Klassen et al.

2004). Killer toxins can induce apoptosis mediated by

yeast caspase Yca1p, characterized by DNA fragmenta-

tion, and phosphatidylserine external membrane expres-

sion. This could be a general cell death mechanism un-

der natural environmental conditions (Paluszynski et al.

2007, Schmitt and Reiter 2008).

The direct use of killer toxins in antifungal ther-

apy was discouraged owing to some of their proper-

ties. They are generally heat-labile, protease-sensitive

and act within a narrow pH and temperature range. They

are antigenic and toxic, as shown for Pichia anomala

killer toxin (Pettoello-Mantovani et al. 1995). To over-

come these pitfalls of a potential therapeutic agent, im-

munological derivatives were generated on the basis of

the idiotypic network that mimicked the toxic effect of

P. anomala killer toxin (Polonelli et al. 1991). Killer

antibodies with the internal image of the active site of

a killer toxin, which acted as antibiotics, were then ob-

tained. They exerted significant therapeutic effects in

experimental models of candidiasis, aspergillosis and

pneumocystosis.

Toxic effects were also obtained with single chain

variable fragment (scFv) preparations and they were fur-

ther examined by synthesizing overlapping decapeptides

which correspond to the light chain of antibodies (VL)

and heavy chain of antibodies (VH) regions. These re-

gions include the complementary determining regions

(CDRs) that were tested in vitro against C. albicans.

Several peptides were active and one of them, corres-

ponding to the framework sequence with the final three

amino acids belonging to VL CDR1, was selected. It

was very cytotoxic and the substitution of the N-ter-

minal glutamic acid by alanine generated a peptide with

the AKVTMTCSAS sequence that was several times

more active and was called killer peptide (KP). The KP

interacted with β-glucan and this binding was inhibited

in a dose dependent manner by laminarin (Polonelli et

al. 2003). The peptide was as active as the killer an-

tibody against a number of microbial pathogens in ad-
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dition to C. albicans, and was effective even in normal

and immunocompromised animals against vaginal and

systemic candidiasis (Polonelli et al. 2003), dissemi-

nated cryptococcosis (Cenci et al. 2004) and paracoc-

cidioidomycosis (Travassos et al. 2004a). The KP is

very stable forming dimers in non-reducing conditions

without loss of activity (Magliani et al. 2004a, b).

The remarkable cytotoxicity of KP was also exam-

ined by electron microscopy. C. albicans cells treated

with KP showed important internal alterations, includ-

ing cell wall swelling with middle electron-dense re-

gion, collapse of the plasma membrane, condensation

and fragmentation of nuclear material, and alteration of

mitochondria structure (Fig. 1A). In a dividing cell with

a big vacuole and chromatin condensation and fragmen-

tation, cellular alterations were seen beyond the septum

separating both cells, with the daughter cell already af-

fected by the KP showing an altered cell wall (Fig. 1B).

A MODEL OF DIRECT ANTIFUNGAL EFFECT
OF A PEPTIDE

Glucans, chitin and mannoproteins, in addition to plasma

membrane sterols, are natural targets of antifungal drugs.

Additional targets are ceramide monohexosides, ubiqui-

tously present on the fungal cell wall and displaying

several roles in fungal cells (Nimrichter et al. 2008). In

C. neoformans (Rodrigues et al. 2000), C. albicans and

Pseudallescheria boydii, these glycolipids were identi-

fied as targets of human antibodies that inhibited fun-

gal growth. Other targets are melanin, adhesion factors,

and cell wall enzymes. The killer decapeptide (KP) de-

scribed above was synthesized and engineered demon-

strating a strong candidacidal activity in vitro and curing

rat vaginal infections caused by fluconazole-susceptible

and -resistant C. albicans strains (Polonelli et al. 2003).

The fungicidal activity of KP in vitro against P. brasi-

liensis and its therapeutic activity in vivo have been re-

ported (Travassos et al. 2004a).

Paracoccidioidomycosis (PCM) is the prevalent

systemic mycosis in South America with most reported

cases in Brazil. It is a major cause of disability and

death among young adult rural workers. Sequels are fre-

quent. The evolution of the disease and the mortality

burden are influenced by the socio-economic status of

the patients. Although long periods of antifungal ther-

Fig. 1 – Electron micrographs showing the cytotoxic effects of the

killer peptide (KP) on Candida albicans. (A) Normal untreated or

treated with the inactive scrambled peptide C. albicans yeast cell (left)

as compared with the KP-treated yeast cell (right). Major alterations

can be seen as the swelling of the cell wall, plasma membrane collapse,

chromatin condensation and nuclear fragmentation. (B) An elongated

C. albicans cell with a budding cell, both affected by KP treatment.

The same alterations as in (A) are seen with nuclear fragmentation and

cytoplasmic blebs invading the daughter cells beyond the septum.

apy with itraconazole, amphotericin or sulfamethoxa-

zole/trimethoprim are used in clinical practice, relapses

are a significant unsolved problem (Travassos et al.

2008b). Vaccination against PCM is now a prospective

goal after P10, and four other peptides derived from the

major diagnostic antigen gp43 were found to be promis-

cuously presented by several human leukocyte antigens

DR, MHC class II molecules (HLA-DR) (Iwai et al.

2003). Such a vaccine could function as an adjuvant

to chemotherapy significantly reducing the time of treat-

ment (Travassos et al. 2008a, b).

Wide-spectrum antimicrobial peptides, such as KP,

might also be considered as an alternative adjuvant to

chemotherapy, and the projected peptide immunother-

apy to shorten the time of treatment and as another op-
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tion in cases of anergy and drug resistance. Multiply-

budding yeast cells of P. brasiliensis had their viability

hampered at 39 ng of KP/yeast in distilled water. The

D-isomeric form of KP was also active. Further, the

decapeptide was therapeutic in B10A mice infected in-

travenously with 3 × 106 cells of P. brasiliensis Pb18

isolate administered intraperitoneally at 3.3 μg/g of

body weight, 1 h after infection and 1 and 2 days later.

With this protocol, no colony forming units (CFUs) were

obtained from lung, spleen and liver after 8 days of fun-

gal challenge in the KP treated animals. In these animals

compared to those injected with the scrambled peptide,

the liver granulomas were smaller and fewer with no

visible fungi. The lungs were less infiltrated with exten-

sive areas of normal alveoli and no visible fungi. Spleens

also were little affected, with no detectable fungi.

It was clear therefore that KP was an effective in-

hibitor of P. brasiliensis in vitro and in vivo (Travassos

et al. 2004a).

It is still not clear whether α-1,3 glucan, the predom-

inant polysaccharide of yeast forms of P. brasiliensis,

is a target of KP. There is, however, evidence that yeast

forms may have β-glucans at the cell surface. Macro-

phages from pentraxin 3 transgenic (PTX3 Tg) mice

showed improved opsonin-independent phagocytosis of

zymosan particles and yeast forms of P. brasiliensis. In

the case of P. brasiliensis, an enhanced microbicidal

activity accompanied by high production of nitric ox-

ide was observed in macrophages from transgenic mice.

Blockade of dectin-1 receptor for β-1,3 glucan inhib-

ited the phagocytosis of zymosan particles by PTX3 Tg

macrophages, pointing out the relevant role of dectin-1

as the main receptor involved in zymosan and possibly

also of P. brasiliensis uptake (Diniz et al. 2004).

BIOACTIVE PEPTIDES EXPRESSED AS
IMMUNOGLOBULIN ISOLATED CDRs

The discovery by Polonelli et al. (Polonelli et al. 2003,

Magliani et al. 2004a, b) that internal sequences of im-

munoglobulin variable regions may display antibiotic

properties prompted us to investigate the activity of mon-

oclonal antibody (mAb) CDRs tested as synthetic pep-

tides. Immunoglobulins have polymorphic heavy and

light chains and the idiotypic variability is related to

the diversity of the antigen binding site and particularly

to the hypervariable domains called complementarity-

determining regions (CDRs). There are 6 CDRs in both

variable regions of light (VL) and heavy chains (VH)

with background variability on each side of the CDRs.

The CDRs are named H1, H2, H3 and L1, L2, L3 in

heavy and light chains, respectively. The framework

sequences between CDRs can be similar or identical.

Although all CDRs are expected to contribute to anti-

gen binding with variable affinity, only the CDR 3 from

VH when tested as an isolated linear or cyclic peptide

was found to have the same specificity of the original

antibody, sharing some of its biological properties. VH

CDR3 (H3) peptides with such properties have thus been

called micro (mini) antibodies (Levi et al. 1993, Bour-

geois et al. 1998). They can even compete with the an-

tibody for binding to a certain antigen. The other CDRs

generally do not show a similar reactivity when tested

as isolated peptides.

Recently we showed, in collaboration with Polo-

nelli’s and Ponton’s groups from Parma and Bilbao, re-

spectively, that, independently of the specificity of the

native Ab, CDRs other than H3 may display, with high

frequency, antimicrobial, antiviral and antitumor activ-

ities in a way reminiscent of molecules of early innate

immunity (Litman et al. 2005). The following mAbs

were studied as sources of the CDRs: Ab (mAb C7),

raised against a C. albicans antigen; mouse mAb pc42,

sharing H1 and H2 with mAb C7; and human mAb

HuA, sharing no CDR either with mAb C7 or mAb pc42,

with specificity for difucosylated blood group A. All

mAbs generated CDRs that, represented by synthetic

peptides, showed in vitro, ex vivo and/or in vivo differen-

tial antimicrobial (C. albicans), antiviral (HIV-1) and/or

antitumor activities (Polonelli et al. 2008).

CDRs C7/pc42 H2 and HuA L1 were directly cyto-

toxic for melanoma and HL-60 (human leukemia) cells

causing caspase-dependent apoptosis. H2 peptide ac-

tivity was receptor-mediated in melanoma cells. Both

C7 H2 and HuA L1 peptides in the C-terminal amidated

form were active against lung colonization by melanoma

cells by intravenous injection (i.v.). Peptides were ad-

ministered by intraperitonial injection (i.p.) (250 μg)

every other day for 11 days, starting on the 1st day af-

ter tumor cell challenge. After 22 days and compared

to the untreated control, the number of cancerous nod-
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ules in the lungs of peptide treated animals were very

few. Presumably, even better results could have been

obtained by optimization of the peptide administration

protocol (Polonelli et al. 2008). C7 H3 but not C7/pc42

H2 competed with mAb C7 for binding to phosphatidyl-

choline, the probable ligand of polyreactive C7 (IgM) on

melanoma cells. This CDR (C7 H3) together with the

H3 CDRs of two anti-melanoma mAbs (A4 and A4M),

that competed with the antibodies for binding to mel-

anoma cells, were three examples of micro (mini) anti-

bodies shown in our laboratory (unpublished results).

A PEPTIDE VACCINE AGAINST
PARACOCCIDIOIDOMYCOSIS

The main diagnostic antigen of P. brasiliensis was iden-

tified in our laboratory in 1986 (Puccia et al. 1986; re-

viewed Travassos et al. 2004b). Glycoprotein gp43 re-

acts with 100% sera of patients with paracoccidioido-

mycosis from a vast region of South America, with the

possible exception of sera from certain Western areas.

It elicits an immune response that protects against the

intratracheal challenge by virulent P. brasiliensis yeast

cells. This molecule has been cloned and sequenced

(Cisalpino et al. 1996). Apart from B cell epitopes,

which are beginning to be identified, the gp43 carries

an immunodominant epitope that elicits a predominant

IFN-γ -mediated Th-1 response. It is responsible for

delayed type sensitive (DTH) reactions in infected ani-

mals (Rodrigues and Travassos 1994). The T-CD4+ cell

epitope was mapped to a peptide called P10 with the

QTLIAIHTLAIRYAN sequence, the HTLAIR hexapep-

tide core being essential for priming the immune re-

sponse (Taborda et al. 1998). P10 was as protective

as the gp43 in intratracheal injection (i.t.) challenged

mice, being administered i.p with complete Freund’s ad-

juvant (CFA). The nucleotide sequence encoding P10

was conserved in a number of isolates (Travassos et

al. 2004b).

The T cell epitope in peptide P10 is presented by

major histocompatibility complex (MHC) class II mo-

lecules from three different mouse haplotypes (Taborda

et al. 1998). Promiscuity of P10 was also observed with

different HLA-DR alleles, as this peptide and a derivative

(gp43180-194) without the C-terminal asparagine residue

and with N-terminal lysine bound to nine prevalent

Caucasian HLA-DR molecules (Iwai et al. 2003).

Additional gp43 peptides were also identified using the

TEPITOPE algorithm, which bound promiscuously to

several HLA-DR molecules. As pointed out before

(Travassos et al. 2008a, b) this is an essential property

of a vaccine peptide candidate considering the genetic

diversity of the target immunizable population.

In 29 patients with PCM and submitted to

chemotherapy, 79% of them recognized one peptide se-

lected by the TEPITOPE algorithm. By pooling pep-

tides gp4345-59, gp43106-120, gp43181-195 or P10, and

gp43283-298, the recognition frequency increased to 86%

(Iwai et al. 2007). Overall for 25 Caucasian HLA-DRs,

P10 and neighboring peptides were predicted to bind

(TEPITOPE) to 90% or more of these molecules. Very

few healthy individuals had peripheral blood mononu-

clear cells (PBMC) proliferating with gp43 and even

fewer with gp43 derived peptides. They may have been

exposed to P. brasiliensis on a trip to reserve areas of

the fungus or cross-reacted with related fungal antigens,

possibly also exo-β-1,3-D-glucanases. Site homologous

but unidentical sequences, in comparison with P10, were

found in β-1,3-glucanases from Aspergillus nidulans,

Histoplasma capsulatum, Blastomyces dermatitidis and

Lacazia loboi (a gp43-like protein).

The rationale for a peptide vaccine based on P10

has been discussed recently (Travassos et al. 2008a).

Basically: “Stimulation of an effective IFN-γ -producing

T-helper response can simultaneously trigger the pro-

duction of potentially protective antibodies and the ac-

tivation of CD8+ T cells in addition to activation of

phagocytic cells. In the presence of several immuno-

genic molecules of the fungal agent, stimulation of one

arm of the immune system may alter a state of early or in-

stalled immunosuppression”. Since treatment of fungal

infections and particularly of PCM involves chemothera-

peutic drugs, a peptide vaccine could work as an adjuvant

to reduce the treatment period, which is usually long,

avoid relapses and reverse the potentially lethal anergic

cases. It also could help to treat those cases of fungal

drug resistance.

To tackle the above issues while using experimental

PCM in Balb/c mice, P10 immunization was associated

with chemotherapy in i.t. infected animals using two

protocols. In the first protocol, infected mice were treated
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with P10 and/or a chemotherapeutic drug starting after

48h of infection. In the second protocol, P10 and/or drug

treatment was started after 30 days of infection. It aimed

at reproducing a condition of established infection as in

patients with PCM. The treatment was held for 30 days,

during which groups of mice received i.p. doses of itra-

conazole, fluconazole, ketoconazole, sulfamethoxazole

or trimethoprim-sulfamethoxazole at every 24 h. Am-

photericin B was given at every 48 h. P10 was admin-

istered weekly for 4 weeks, initially in CFA and three

times in incomplete Freund’s adjuvant (Marques et al.

2006).

In all cases, there was an additive protective effect

with the combination of P10 immunization and chemo-

therapy. Animals treated with sulfamethoxazole showed

early protection followed by relapse. Significantly, the

association of sulfamethoxazole and P10 successfully

controlled the infection. In the second protocol, the

fungal burden was examined after 60 and 120 days of

infection. An additive protective effect of P10 immu-

nization and drug treatment was also observed, with 60

to 80% reduction in lung CFUs. Chemotherapy alone

induced a predominant Th-2 response with increased

production of IL-4 and IL-10 detected in lung homo-

genates, whereas P10 vaccination stimulated a Th1 re-

sponse, rich in IFN-γ and IL-12 without suppressing the

Th-2 response (Marques et al. 2006). These are encour-

aging results in short term experiments. It is probable

that an increased protective effect will be obtained in

long term trials in which the animals will have time to

completely recover of the fungal infection.

The condition of anergy was addressed as follows.

Balb/c mice were treated with dexamethasone-21 phos-

phate added to drinking water. Negative DTH with P.

brasiliensis antigen was obtained after 30 days. Im-

munosuppressed mice (n=10), infected with virulent P.

brasiliensis, began to die 10 days after infection, and all

animals were dead after 70 days. Chemotherapy and/or

P10 immunization of immunosuppressed animals was

started 15 days after i.t. infection and all treated animals

survived thereafter. Chemotherapy and P10 immuniza-

tion conferred additive protection. A significant increase

in IL-12 and IFN-γ and decrease of IL-4 and IL-10 were

observed in mice immunized with P10 alone or associ-

ated with antifungal drugs (Marques et al. 2008). These

results suggest that P10 immunization can be protective

in anergic patients.

Delivery of peptides for an efficient immunization

has always been a concern of our group because previous

experiments have always used CFA as an adjuvant. The

following alternatives therefore have been investigated.

Early studies have shown that immunization of

Balb/c mice with a mammalian expression vector (VR-

gp43) carrying the full gene of gp43 with Cytomegalo-

virus (CMV) promoter induced B and T cell-mediated

immune responses which were protective against the i.t.

challenge by virulent P. brasiliensis yeast forms (Pinto

et al. 2000). The cellular immune response in mice im-

munized with VR-gp43 was kept for at least 6 months

after immunization. A similar construction with P10

was made several years later. Immunization with the

P10 minigene in plasmid DNA alone or associated with

a plasmid carrying mIL-12 insert was tested in Balb/c

mice i.t. infected with a virulent isolate (Pb18) of P.

brasiliensis. A significant reduction of fungal burden in

lung, spleen and liver was obtained with production of

IL-12 and IFN-γ and reduction of IL-4 levels in lung

homogenates (G. Rittner et al., unpublished results).

The construction of MAP (multiple antigen pep-

tide) was also tried to deliver a tetravalent antigen con-

taining P10 sequence. MAP-10, or M10, had four equal

LIAIHTLAIRYAN (QT-less P10) chains synthesized on

a branched lysine core. Lymph node cell proliferation

from P10 or M10-sensitized mice was identical with in

vitro stimulation with either P10 or M10. Immunization

with single dose of M10 without adjuvant was protec-

tive with few lung, spleen and liver CFUs and few or

no yeasts in lung histopathological sections (Taborda et

al. 2006).

In Balb/c mice infected i.t. for 30 days, the pro-

tective effect of P10 was tested alone or mixed with

adjuvants: alum, monophosphoryl lipid A or complete

Freund’s adjuvant (Travassos et al. 2008a, b). Unexpect-

edly, P10 administered in phosphate-buffered saline was

most effective with a significant reduction in lung CFUs

with no fungi detected in spleens and livers.

The protective effect of P10 has also been tested

with anti-gp43 mAbs. Anti-gp70 mAbs have been de-

scribed as protective against experimental PCM (Mattos

Grosso et al. 2003). In patients that underwent chemo-
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therapy, both gp43 and gp70 are markers for monitoring

successive treatment and cure through their decreased

antigenemia and specific antibody response (Marques

da Silva et al. 2004, Silva et al. 2004). In the experi-

mental Balb/c model of PCM infection, anti-gp43 mAb

3E effectively reduced the fungal burden and promoted

phagocytosis in vitro (Buissa-Filho et al. 2008). The

recognized epitope in the gp43 was mapped to the

sequence NHVRIPIGYWAV shared with Aspergillus

fumigatus, A. oryzae and B. graminis internal sequences

of β-1,3-glucanases. This peptide could increase the

protective effect of P10 in a possible peptide vaccine

against PCM.

Again, as stressed, we quote our own thought ex-

pressed before (Travassos et al. 2008a): “Short term

protocols (30 to 45 days) have the advantage of allow-

ing repeated experiments to define a certain response.

However, longer periods of treatment and observation

may lead to even more effective results, aiming at ster-

ilization in experimental models with massive infection

loads”.

ANTITUMOR PEPTIDES

Cancer remains as a major source of mortality and

morbidity around the world, despite numerous recent

advances in treatment alternatives. Chemotherapy and,

more recently, biochemotherapy, is still the choice treat-

ment for advanced and metastatic disease (Espinosa et

al. 2003). It is, though, often associated with delete-

rious side effects caused by drug-induced damage to

healthy cells and tissues (Buzaid and Atkins 2001).

Quiescent or slowly proliferating cancer cells are re-

fractory to the cytotoxic effect of drugs interfering with

DNA synthesis (Naumov et al. 2003) and, frequently,

cellular changes affected sensitivity to chemotherapeu-

tic drugs by increased expression of drug-detoxifying

enzymes and/or drug transporters, altered interactions

between the drug and its target, increased ability to re-

pair DNA damage and defects in the apoptotic pathway

(Gatti and Zunino 2005). Development of a new class of

anticancer drugs that lack toxicity to healthy cells and are

unaffected by common mechanisms of resistance would

be a major advance in cancer chemotherapy. In this sense

bioactive peptides, including cationic antimicrobial pep-

tides (CAPs), are promising candidates for antitumor

treatment.

CAPs have been found in all species that have been

tested so far, including bacteria, fungi, plants and ani-

mals, and they probably represent one of the first evolved

forms of defense of eukaryotic cells against pathogens

(Zasloff 2002). An updated list of CAPs can be found

in http://aps.unmc.edu/AP/main.php, with 1,393 entries.

Most CAPs have a broad spectrum of antimicrobial ac-

tivities; only 82 of the listed CAPs were active, however,

against tumor cells.

Despite their diverse origins, antimicrobial pepti-

des have common biophysical parameters, including

small size, positive charge, and amphipathicity, that are

likely important for peptide activity. These molecules

are grouped according to structural characteristics, and

are usually separated in three classes: (1) linear, often

forming alpha-helical structures; (2) cysteine stabilized,

beta-sheet structures; and (3) peptides with one or more

predominant amino acid residues, but variable in struc-

ture (Yount et al. 2006). As stated before, not all CAPs

are able to kill cancer cells, and to date, it has not been

possible to predict an antitumor activity based on the

peptide structure.

The short length and cationic/amphipathic proper-

ties of these molecules enable CAPs to interact and dis-

rupt lipid membranes. Positively charged amino acid

residues, such as lysine and arginine, and hydropho-

bic residues are frequently found in large numbers in

CAPs (Hoskin and Ramamoorthy 2008). The high ex-

pression of anionic molecules, such as phosphatidylser-

ine in the outer membrane leaflet of human tumor cells

(Utsugi et al. 1991, Dobrzynska et al. 2005), as well

as O-glycosylated mucins (Yoon et al. 1996) on can-

cer cell membranes, account for the net negative charge

of these cells and their electrostatic interactions with

cationic CAPs. In the case of magainin peptides, the

cytotoxic activity for tumor cells was abolished by elim-

inating the electrical gradient across the plasma mem-

brane. Apparently, the cellular potential is critical for

peptide channel formation in tumor cell membranes and

could determine the selective killing of tumor cells by

CAPs (Cruciani et al. 1991). The interaction between

CAPs and normal cells is not favored because of the

overall neutral charge conferred by the zwitterionic
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major membrane components, such as sphingomyelin,

phosphatidylethanolamine and phosphatidylcholine

(Zachowski 1993).

CAPs interaction with cancer cell membranes is not

mediated by receptors, since D-amino acid peptide ana-

logues displayed an activity similar to the all-L-amino

acid peptide (Rodrigues et al. 2008, Hetru et al. 2000).

Another mechanism for cancer cell killing by

CAPs is the induction of apoptosis by permeation of

mitochondrial membrane after internalization, release

of cytochrome c, leadind to caspase 9 and 3 activation

(Pardo et al. 2001). Both cationic and hydrophobic

amino acids play a role in the peptide permeation of

mitochondrial membranes (Horton et al. 2008). Alter-

natively, apoptosis may be induced by CAPs interaction

with cell death receptors, such as Fas ligand, leading to

caspase 8 activation. Interestingly, arginine, glycine and

asparagine, integrin homing domain (RGD)-conjugated

tachyplesin induced both pathways, suggesting that

some CAPs may have more than one effect on cancer

cells (Chen et al. 2001).

Protein glycosylation may alter the secondary

structure of a membrane-associated protein or peptide,

and altered glycosylation of membrane proteins is fre-

quently found in malignant cells. Moreover, differential

branching and sialic acid content of N-linked glycans

are associated with an increase in the net negative charge

in the membrane of many cancer cells. Interestingly,

peptide-glycosylation was associated with increased po-

tency of drosocin in vitro (McManus et al. 1999). It is

therefore likely that glycosylation of CAPs and/or can-

cer cell membrane proteins may influence the binding

affinity of some CAPs for the cancer cell.

CAPs may be used in combination with conven-

tional chemotherapeutic antitumor drugs in order to re-

duce effective doses, and thereby reduce harmful side-

effects frequently observed in treated patients. Cecropin

A, in combination with 5-fluorouracil and cytarabine,

showed a synergistic cytotoxic effect on human leukemia

cells (Hui et al. 2002).

Representative naturally occurring CAPs with anti-

tumor activities are depicted on Table I.

Peptides with antitumor activities have also been

produced and/or identified from other sources, such as

phage-, bacterial- and cell-display libraries. These pep-

tides can exhibit direct tumor cell cytotoxicity, act as

immunomodulators or as antiangiogenic factors. For a

review on these peptides, see Daffre et al. (2008).

A MODEL OF ANTITUMOR EFFECT OF A PEPTIDE

Gomesin is a CAP isolated from hemocytes of the un-

challenged Brazilian spider Acanthoscurria gomesia-

na. It is a hairpin-like two-stranded antiparallel β-sheet

structure formed by 18 amino acid residues and two post-

translational modifications, the N-terminal pyroglutamic

acid (Z) and the C-terminal amidated arginine residue

(Silva et al. 2000, Mandard et al. 2002; Table I). A

rigid conformation is maintained by two internal disul-

fide bridges formed by four cysteine residues, Cys2-15

and Cys6-11, together with six hydrogen bonds in the

central part of the molecule, as well as at each end of

the β-sheet (Mandard et al. 2002). The peptide is am-

phypathic, with a hydrophobic face (residues Leu5, Tyr7,

Val12 and Tyr14) and three hydrophilic regions contain-

ing positively charged and polar amino acids at the N-

terminus (Arg3 and Arg4), at the C-terminus (Arg16 and

Arg18) and within the canonical β-turn (Lys8, Gln9 and

Arg10) (Fazio et al. 2006). A representation of gomesin

is depicted on Figure 2.

As stated before, gomesin has a broad and strong

microbicidal activity. The peptide is active against Gram-

positive and Gram-negative bacteria, filamentous fungi,

yeast (Silva et al. 2000), Cryptococcus neoformans (Bar-

bosa et al. 2007) and parasites, such as Plasmodium fal-

ciparum and Plasmodium berghei (Moreira et al. 2007).

The antitumor activity of gomesin was tested in

vitro and in vivo (Rodrigues et al. 2008). Gomesin ex-

erted direct cytotoxic effects on murine and human tu-

mor cells in vitro. The estimated IC50 for the murine

melanoma cell line B16F10-Nex2 was 3.58 μM, and

was below 10 μM for human tumor cell lines (Fig. 3).

Human endothelial cells were also sensitive to gomesin

in vitro, with an IC50 of 5.30 μM. The cytotoxic effect

was time- and dose-dependent, and was not reversed af-

ter peptide removal. The β-hairpin structure and the am-

phipathicity of the peptide are important for antitumor

activity, since substitution of cysteine residues by serine

ones (eliminating one or both disulfide bridges), or dis-

ruption of the hydrophobic face (by substituting residues

Leu5 and/or Val12 by serine units) reduced or abolished
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TABLE I
Naturally occurring CAPs with antitumor activity.

Peptides AA sequence* Source
Antitumor
Activity

Refs.

α-helical

BMP27, BMP28 GRFKRFRKKFKKLFKKLSPVIPLLHL,
GGLRSLGRKILRAWKKYGPIIVPIIRI

Bovine
Cathelicidin-
derived

In vitro Risso et al. 1998,
Risso et al. 2002

Cecropin A,
Cecropin B

KWKLFKKIEKVGQNIRDGIIKAG-
PAVAVVGQATQIAKY
KWKVFKKIEKMGRNIRNGIVKAG-
PAIAVLGEAKAL

Insects and
mammals

In vitro,
Xenogeneic
model in vivo

Moore et al. 1994,
Chan et al. 1998,
Winder et al. 1998,
Hui et al. 2002,
Ye et al. 2004,
Suttman et al. 2008

LL-37/hCAP-18 LLGDFFRKSKEKIGKEFKRIVQRIK-
DFLRNLVPRTES

Human In vitro Okumura et al. 2004,
Li et al. 2006

Magainins and
analogues

GIGKFLHSAKKFGKAFVGEIMNS
(magainin 2)

Frog skin In vitro,
Xenogeneic
model in vivo
(local therapy)

Cruciani et al. 1991,
Soballe et al. 1995,
Takeshima et al. 2003,
Cruz-Chamoro et al. 2006,
Lehman et al. 2006

Gaegurin 5,
Gaegurin 6

FLGALFKVASKVLPSVKCAITKKC
FLPLLAGLAANFLPTIICFISYKC

Frog skin In vitro Kim et al. 2003,
Won et al. 2006

Aurein 1.2 GLFDIIKKIAESF Frog skin In vitro Rozek et al. 2000

Citropin 1.1 GLFDVIKKVASVIGGL Frog skin In vitro Doyle et al. 2003

Melittin GIGAVLKVLTTGLPALISWIKRKRQQ Insect venom In vitro, In vivo
(melittin-
avidin
conjugate)

Tosteson and Tosteson 1981,
Killion and Dunn 1986,
Saini et al. 1999,
Holle et al. 2003

Epinicidin-1 GFIFHIIKGLFHAGKMIHGLV Fish In vitro Lin et al. 2009

Polybia-MP1 I D W K K L L D A A K Q I L Wasp venom In vitro Wang et al. 2008

β-sheet

Defensins
HNP-1
HNP-2
HNP-3

ACYCRIPACIAGERRYGTCIYQGRLWAFCC
CYCRIPACIAGERRYGTCIYQGRLWAFCC
DCYCRIPACIAGERRYGTCIYQGRLWAFCC

Human In vitro, In vivo
xenogeneic
model (HNP-1)

Lichtenstein et al. 1986,
Müller et al. 2002,
McKeown et al. 2006,
Xu et al. 2008

Bovine
Lactoferricin

FKCRRWQWRMKKLGAPSITCVRRAF milk In vitro, In vivo
Xenogeneic
model,
antiangiogenic

Yoo et al. 1997a, b,
Eliassen et al. 2002,
Mader et al. 2005,
Eliassen et al. 2006

Tachyplesin I KWCFRVCYRGICYRRCR Crustacean
hemocytes

In vitro,
In vivo
(RGD-
tachyplesin)

Li et al. 2000,
Chen et al. 2001,
Ouyang et al. 2002,
Chen et al. 2005,
Shi et al. 2006

Gomesin ZCRRLCYKQRCVTYCRGR Insect In vitro, In vivo
(local therapy)

Rodrigues et al. 2008

Linear, with
predominant AA

PR-39, Proline
arginine-rich
porcine
cathelicidin

RRRPRPPYLPRPRPPPFFPPRLPPRIPP-
GFPPRFPPRFP

Porcine
cathelicidin-
derived

In vitro Ohtake et al. 1999

*Amino acid (AA) sequences are given in one-letter code. Bold indicate Cys residues that form disulfide bonds.
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Fig. 2 – Schematic representation of gomesin. The molecule is formed by two antipar-

allel β-strands stabilized by 2 disulphide bridges (black lines) and 6 hydrogen bounds

(hatched lines). Gomesin contains a hydrophobic face and three hydrophilic regions.

Fig. 3 – Gomesin cytotoxicity in vitro against human tumor cells. Hu-

man melanoma (A2058) and cervical cancer (HeLa) cells were treated

in vitro with different concentrations of gomesin for 12 hours, and vi-

able cells were counted in presence of Trypan Blue. The percentage of

reduction of cell viability in relation to untreated cells is shown. The

melanoma A2058 was the most sensitive and HeLa the most resistant

cell line amongst all lineages studied (Rodrigues et al. 2008).

the cytotoxic effect. The enantiomer D-gomesin, syn-

thesized employing D-amino acids and containing both

disulfide bridges, was equally cytotoxic for tumor cells,

suggesting that chiral recognition is not required for the

antitumor effect (Rodrigues et al. 2008).

The peptide concentrates at the tumor cell mem-

brane and forms clusters, suggesting the formation of

pore structures. This putative pore formation by gomesin

at the cell surface, and consequent cell permeabiliza-

tion, caused (1) early morphological alterations, with

increased granularity and loss of cytoplasmic content;

(2) release of lactate dehydrogenase (LDH) in a dose-

dependent way; (3) partial inhibition of the respira-

tion-dependent proton gradient; (4) internalization of

immunoglobulins that reacted with tubulin filaments

and with nuclear histone H1 (monoclonal A4M). The

peptide did not induce apoptosis of tumor cells (Ro-

drigues et al. 2008).

Interestingly, the monoclonal antibody (mAb) A4M

is an IgM that recognizes nuclear histone H1 in B16F10-

Nex2 murine melanoma cells, but is not cytotoxic to the

intact tumor cell (A.S. Dobroff et al., unpublished re-

sults). After treatment with low doses of gomesin, how-

ever, the mAb A4M was internalized in B16F10-Nex2

cells and showed additive cytotoxic activity in vitro.

Therefore, gomesin at low concentrations could facili-

tate the penetration of drugs inside tumor cells, poten-

tially reducing toxic doses and allowing penetration of

molecules that are not directly cytotoxic to cells with

intact membranes.

More importantly, topical in vivo treatment with

gomesin significantly delayed subcutaneous murine

melanoma development and significantly increased the

survival of animals with tumors below the allowed max-

imal size limit. Male mice with established subcuta-

neous B16F10-Nex2 tumors (4–10 mm3) were treated

topically three times a week with individual doses of

4 μg of gomesin incorporated in 20 mg of an anionic,
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oil-in-water cream. This effect can be explained by the

direct effect of gomesin on tumor cells, but also by an

effect on tumor neoangiogenesis, since endothelial cells

were sensitive to low concentrations of the peptide.

Repeated topical applications of gomesin did not affect

the peripheral healthy skin of treated mice (Rodrigues et

al. 2008).

Some patients may develop extensive, confluent re-

gional metastases near the primary nodular melanoma.

In these cases, surgical excision or radiotherapy are un-

suitable, and topical treatment is a preferred alternative.

Some topical treatments have indeed being used ten-

tatively, but only partial responses were obtained with

5-aminolevulinic acid photodynamic therapy (Wolf et

al. 1993), imiquimod (Steinmann et al. 2000, Hesling et

al. 2004), dinitrochlorobenzene (Malek-Mansour 1973,

Illig et al. 1984, von Nida and Quirk 2003), and diphen-

cyprone (Damian and Thompson 2007). Gomesin could

be an alternative for treatment of these patients and

eventually also patients with other skin cancers.

PERSPECTIVES

Peptides used in protective protocols against pro- and

eukaryotic cells, including fungi and tumor cells, can

act directly on target cells or will elicit an immune re-

sponse that may be effective to control infections and

tumor development. Peptides allow structural changes

to incorporate protective substitutions, chiral derivatives,

non-natural amino acids and other modifications aiming

at increased stability, efficiency and resistance to prote-

olysis. In this sense, they are much more drug-like than

recombinant proteins. A great number of peptide se-

quences with biological activity is now recognized, and

the finding that fragments of immunoglobulin variable

chains have increased frequency of bioactivity opens a

broad field of investigation. Peptide-based vaccines are

now in development for various pathologies including

cancer (Purcell et al. 2007). The possibility of chemi-

cal synthesis of a limitless variety of peptide sequences

and derivatives poses the question of how many more

reagents can be produced compared to our capacity to

test them in different biological systems. The use of

promiscuous peptides for vaccination of a genetically

heterogeneous population is another aspect that has to be

considered. Remarkably, the P10 from gp43 is a good

vaccine candidate being presented by most Caucasian

HLA-DR molecules, and being able to protect against

massive P. brasiliensis infection in normal and immuno-

suppressed mice. The combination of chemotherapy and

P10 vaccination is therefore a very promising strategy

to treat human PCM. Antitumor peptides for systemic

and topical treatment are additional tools that can be

largely developed as adjuvants of conventional treatment.
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RESUMO

Peptídeos são moléculas particularmente reativas produzidas

por uma grande variedade de espécies, aptos a exercer um

número de funções em organismos uni- e multicelulares como

mediadores, agonistas e substâncias regulatórias. Alguns de-

les exercem efeitos citotóxicos em células outras das que os

produzem, e podem ter um papel controlando subpopulações

e protegendo certas espécies ou tipos celulares. No presente,

focalizamos peptídeos antifúngicos e antitumorais e discutimos

alguns modelos nos quais seqüências específicas e estruturas

exercem efeitos inibitórios diretos ou estimulam uma respos-

ta imune protetora. O peptídeo letal (“killer”), deduzido de

um anticorpo anti-idiotípico, com várias atividades antimicro-

bianas bem como outros peptídeos derivados de imunoglobu-

linas com atividades citotóxicas incluindo efeitos antitumorais

são modelos estudados in vitro e in vivo. O peptídeo P10 da

gp43 de P. brasiliensis e a perspectiva de vacina contra a para-

coccidioidomicose é outro tópico ilustrando o efeito protetor in

vivo contra um fungo patogênico. Peptídeos antimicrobianos

catiônicos com atividades antitumorais são os principais re-

vistos aqui. O tratamento local do melanoma murino com o

peptídeo gomesina é outro modelo estudado na Unidade de

Oncologia Experimental (UNONEX) da UNIFESP.

Palavras-chave: peptídeos bioativos, Paracoccidioides brasi-

liensis, células tumorais, peptídeo letal, melanoma, apoptose.
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