Granulometria da fração areia de alguns perfis de solos de Aripuana - MT

R. R. Aloisi (*)
D. Perecin (*)
N. R. Boni (*)

Resumo

O objetivo do presente trabalho é fornecer informações que visam ao auxílio na caracterização dos sedimentos que ocorram na área do Aripuanã-MT. Os resultados indicam que a fração areia dos horizontes apresenta predominância das subfrações finas, seleção pobre e curvas muito assimétricas o que indica que o diâmetro médio não é representativo da fração areia.

INTRODUÇÃO

Visa o presente trabalho, a obtenção de dados e informações sobre o aspecto sedimentológico de perfis que ocorrem na área de Aripuanã (MT), de modo a auxiliar a caracterização de sedimentos que deram origem aos solos da região.

CARACTERIZAÇÃO GERAL DA ÁREA

O Núcleo Pioneiro de Humboldt, local de desenvolvimento de pesquisas constantes do Projeto Aripuanã, localiza-se no Município de Aripuanã-MT, e situa-se em região coberta por vegetação de tipo floresta aberta, desenvolvida em clima Tropical Úmido, do tipo climático Am (Köppen).

A geologia da área é representada por dobramentos Pré-Cambrianos, encimados por cobertura arenítica (Brasil Min. & Agri. Projeto RADAM), o que impõe a esta região relevo plano a ondulado.

Seus solos são representados, na maioria, pelo Latossol Vermelho-Amarelo que se apresentam com alta fertilidade aparente, relevo normal, profundidade efetiva boa, drenagem interna comprometida e erosão bastante pronunciada.

MATERIAL E MÉTODOS

MATERIAL

Solos

Utilizou-se para o presente trabalho, perfis de solos da área de implantação do Projeto Aripuanã, classificados como Latossol Vermelho Amarelo Distrófico textura média e Latossol Vermelho Amarelo Distrófico textura argila.

MÉTODOS

Coleta e preparo das amostras

Através de trincheiras abertas na área de ocorrência do solo em questão, coletou-se amostras de cada horizonte, tomando-se aproximadamente 1 kg de solo com 4 repetições, as quais, acondicionadas em sacos plásticos, foram conduzidas ao laboratório para posteriores tratamentos, onde procedeu-se a sua secagem, destorroamento, peneiramento e armazenamento.

Obtenção da fração areia

Destas amostras, tomou-se 150 g submetendo-as a um processo preliminar de dispersão com NaOH N. Em seguida procedeu-se a lavagem de amostras em peneiras de malha 230 Mesh. O material retido na peneira de 230 Mesh foi passado em peneira de 10 Mesh para eliminação dos calhaus, que continham muitas concreções cuja origem não foi pesquisada.

Submeteu-se a seguir os sedimentos retidos a um tratamento com HCl 2:1 a quente, por um período de 2 horas, a fim de se eliminar os agentes cimentantes do solo.

A areia assim obtida, ou seja, a fração areia total, foi novamente lavada para eliminação de resíduos de ácido, e seca em estufa.

^{(*) —} Prof. dos Departamentos de Solos e Adubos e Ciências Exatas da Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal — UNESP.

Obtenção das subfrações de areia total

A fração areia total foi colocada em um conjunto de peneiras com diâmetro 18, 35, 45, 60, 80, 120, 140, 170 e 230 (Mesh), levado para o agitador por 10 minutos.

O material retido em cada peneira foi pesado para posterior utilização na construção das curvas acumuladas.

Tratamentos estatísticos

A análise estatística visa obter informações que tornam possível descrever os sedimentos em termos de suas propriedades, tais como: diâmetro médio, grau de seleção, grau de assimetria e curtose, desenvolvidos estatisticamente por Sahu (1964) utilizando as estatísticas definidas por Folk & Ward (1957).

$$M_{z} = \frac{\Phi 16 + \Phi 50 + \Phi 84}{3}$$

Geologicamente, esse parâmetro reflete a média geral de tamanho dos sedimentos, sendo afetada pela fonte de suprimento do material, pelo processo da deposição e pela velocidade da corrente.

Observa-se pela fórmula, tratar-se de uma média aritmética dos valores correspondentes ao diâmetro médio das frações grossas, média e fina dos sedimentos.

Essa medida representa a seleção da fração areia do sedimento.

Assimetria (SK_T)

$$SK_{I_{2}} = \frac{\frac{\phi84 + \phi16 - 2.\phi50}{(\phi84 - \phi16)} + \frac{\phi95 + \phi5 - 2.\phi50}{2(\phi95 - \phi5)}$$

Esta fórmula mede o grau de assimetria das freqüências da distribuição de pesos, e define a posição da média em relação à mediana.

Curtose (Kg)

$$K_g = \frac{\phi 95 - \phi 5}{2,44 (\phi 75 - \phi 25)}$$

Esta medida indica a razão de espalhamento médio nas caudas das curvas. Retrata o grau de agudez dos picos das curvas de distribuição de freqüência.

RESULTADOS E DISCUSSÃO

Utilizando-se da metodologia adequada, submeteu-se a fração areia total ao peneiramento obtendo-se seu parcelamento em subfrações, cujos valores médios obtidos com 4 repetições acham-se dispostos no Quadro 1.

As curvas acumulativas por questão de espaço são suprimidas apresentando-se apenas os valores dos percentis no Quadro 2 e dos coeficientes estatísticos no Quadro 3.

DIÂMETRO MÉDIO

Na estimativa da média geral do tamanho dos grânulos da areia dada pelos diâmetros médios (M_Z) apresentados no Quadro 3, observa-se que a variação foi de 2,57 a 3,07 no perfil 1, de 2,48 a 2,77 no perfil 2 e de 2,22 a 2,78 no perfil 3. Há portanto pouca uniformidade tanto entre horizontes como entre perfis e o diâmetro médio caracteriza a fração areia como constituída de suas subfrações finas.

DESVIO PADRÃO

Na avaliação da seleção dos materiais estudados pode-se notar, através do Quadro 3, que o comportamento apresentado pelos perfis são diferentes. Assim, segundo Suguio (1973), o perfil pode-se ser classificado como bem selecionado embora o horizonte B₂₂ apresente valor de desvio padrão (ó₁) superior a 1.

QUADRO 1 - Valores dos pesos médios (g), obtidos com 4 repetições, nos três perfis

Perfis				P	1							P2				P	3	
Horizon	tes	Ар	В1	B21	B22	В3	С	Trado	Ар	В1	B2	C1	C2	Trado	Ар	B2	C1	C2
ф	Mesh						-											
0	18	1,20	1,0	1,6	1,5	1,5	1,4	1,7	1,4	2,1	2,4	1,5	1,4	2,9	0.8	1,6	3,1	3,0
1	35	1,70	1,0	1,7	1,5	1.4	1,3	1,4	1,8	1,7	2,5	1,3	1,4	4,1	1.4	1,8	2,6	2,7
1,5	45	0,83	0,7	0,6	1,0	0,5	0,5	0,6	0,9	0,7	0,6	1,9	0,4	1,4	0,8	0,6	0,8	0,8
2,0	60	1,43	3,6	1,1	8,0	0,7	0,7	0.7	1,0	8,0	0,6	0,3	0,3	1,0	8.0	0,5	0,6	0,6
2,5	80	10.1	6,6	5,3	4,6	4.5	4,5	5,3	4,6	3,7	0,6	1,4	1,2	2,2	4,3	2,1	2,0	1,8
3,0	120	16,5	12,0	16,3	9,4	9,2	10,0	12,9	6,5	6,0	5,7	3,1	2,6	2,5	7.4	4,7	4.4	3,8
3,25	140	12,4	7,9	6,6	8,7	8,1	7,9	12,3	5,3	4,1	4,4	2,5	2,0	3,5	5,0	3.7	3,9	4,7
3,5	170	9,0	8,0	10,5	6,9	6,9	6,4	8,4	4,4	4,2	8,8	3,2	2,8	3,7	2,7	3,8	4.0	4.0
4,0	230	8.7	8,6	8,5	7,2	7.0	7.2	7,9	4.6	5,4	4,4	4,2	4.6	4,0	4.4	3,8	4,6	3,4

Nos perfis 2 e 3, observa-se que, com exceção dos horizontes superficiais $A_{\mathbf{p}}$ (valores de $\delta_{\mathbf{I}}$ inferior a 1), todos os demais são classificados como pobremente selecionados.

No geral, portanto, há predominância do mal selecionamento.

ASSIMETRIA

O Ouadro 3, também apresentando os valores de assimetria (SK_I), indica que a variação se enquadra como assimetria muito negativa, segundo classificação de Suguio (1973).

Isso mostra que há uma acentuada predominância das subfrações areias de menor diâmetro, podendo-se notar, nos Quadros 2 e 3, \$\phi 50\$ (mediana) é sempre menor que M.

CURTOSE

Os valores de curtose (Quadro 3) apresentam variação entre os horizontes e entre os perfis.

Os valores da curtose no perfil 1, baseado em Suguio (1973), indicam as seguintes curvas: muito leptocúrticas para o horizonte Ap; extremamente leptocúrticas para o horizonte B₂₂ e leptocúrticas para os demais horizontes.

No perfil 2, com exceção do horizonte B₂₂ cujos valores da curtose indicam curva extremamente leptocúrtica, os demais horizontes apresentam curvas leptocúrticas.

Finalmente, a análise dos valores de curtose no perfil 3, apresenta as seguintes curvas: extremamente leptocúrtica para o horizonte Ap e B₂, mesocúrtica para o horizonte C₁ e platicúrtica para o horizonte C₂ (Suguio, 1973).

No geral, portanto, há acentuada predominância de curvas leptocúrticas.

QUADRO 2 — Valores do Φ utilizados para o cálculo dos parâmetros estatísticos

		Ф5	ф16	ф25	Ф50	ф75	ф84	ф95
Ар		0,86	2,24	2,50	2,99	3,22	3,42	3,79
В,		0,96	2,15	2,48	3,41	3,46	3,64	3,85
- B ₂₁		0,66	2,30	2,56	3,00	3,35	3,51	3,52
B ₂₂ B ₃		0.71	1,16	2,55	3,04	3,38	3,52	3,85
₩ B ₃		0,54	2,23	2,52	3,06	3,72	3,56	3,82
C		0,55	2,12	2,59	3,04	3,47	3,45	3,78
Trac	lo	1,20	2,49	2,67	3,08	3,36	3,49	3,71
					1			
Ap		0,12	1,48	2,26	2,96	3,36	3,43	3,72
B		-1,72	1,48	2,26	2,96	3,36	3,43	3,72
N B2		-1,92	1,20	2,39	3,12	3,58	3,60	3,87
₩ C,		-1,65	1,09	2,63	3,04	3,33	3,64	3,86
PERFIL C ¹ C ²		-1,68	0.94	2,27	3,12	3,55	3,72	3,90
Tra	do	-1,45	1,27	1,83	2,70	3,32	3,84	3,84
_ω Ap		0,44	2,06	2,38	2,88	3,27	3,40	3,85
, 13		-1.78	1,28	2,45	2,98	3,37	3,54	3,84
PERFIL		-1,40	0,37	1,60	2,97	3,34	3,46	3,71
H C2		-1,52	0,32	1,32	2,94	3,35	3,40	3,81
							571.018	

QUADRO 3 — Valores do Diâmetro Médio, Assimetria, Curtos e Desvio Padrão

Horizonte		Kg	Mz	ól	SKI	
	Ap	2,88	1,67	0,74	-0,36	
	B ₁	3,07	1,21	0,81	-0,69	
-	B ₂₁	2,94	1,48	0,74	-0.40	
Ī	B ₂₂	2,57	1,55	1,06	-0.54	
PERFIL	B ₃	2,95	1,12	0,83	-0.39	
lake.	C	2,87	1,50	0,83	-0,46	
	Trado	3,02	1,49	0,63	-0.34	
	Ap	2,77	1,40	0,97	-0,39	
	B ₁	2,62	1,33	1,03	-0,55	
PERFIL 2	B ₂	2,64	1,37	1,20	-0,61	
	C,	2,59	2,93	1,40	-0,40	
	C ₂	2,59	1,32	1,32	-0,59	
	Trado	2,48	1,13	1,18	-0,37	
es	Ap	2,78	1,57	0,85	-0,33	
PERFIL	B ₂	2,60	1,77	1,17	-0.54	
	C,	2,27	0,95	1,38	-0,66	
	C ₂	2,22	0,81	1,38	-0,63	

SUMMARY

The objective of this work was give help in the characterization of the sediments that occur around Aripuanã-MT.

There were applied statistical parameters in the data of sand sub-fractions obtained in the 3 profiles that represent the area.

BIBLIOGRAFIA CITADA

BRASIL. Ministério da Agricultura. Projeto RADAM.

s.d. — Levantamento exploratório — Reconhecimento de solos da Área do Projeto Aripuanã. 109 p.

FOLK, R. L. & WARD, W.

1957 — Brazos Riverbar: a study in the significance of grain size parameters. J. Sed. Petrol., 27: 3-27.

SAHU, B. K.

1964 — Depositional mechanism from the size analysis of the clastic sediments. J. Sed. Petrol , 34: 73-83.

Suguio, K.

1973 — Introdução à sedimentologia. São Paulo, Edgard Blucher/USP. 317 p.

(Aceito para publicação em 22/12/77)